HDU2121 Ice_cream’s world II —— 最小树形图 + 不定根 + 超级点
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2121
Ice_cream’s world II
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5832 Accepted Submission(s): 1493
0 1 1
4 4
0 1 10
0 2 10
1 3 20
2 3 30
40 0
题解:
1.题目要求:给定一幅有向图,求最小树形图(根节点不确定)。
2.一开始想枚举每个结点作为根节点,然后跑zhuliu算法,求出最小值。结果发现复杂度太大。
3.可行做法:设置一个超级点,作为虚拟的根节点,把超级点连向每一个题目中的点。然后跑zhuliu算法,如果所得的最小树形图中只有一条超级边(超级点连向题目中的点,这个点就是实际的根节点),那么就求出实际了最小树形图;如果有多条超级边(实际得到的为最小树形图森林),则无解。
4.那么超级边的权值应该设为多少呢?由于我们需要从zhuliu算法返回的数据中判断出有多少条超级边,所以超级边就应该设置的足够大,以方便检测,但又不能溢出。所以我们将其设置为题目中所有边的权值之和+1。这样,只要zhuliu()返回来的数据:ans<2*super_edge,就表明只含有一条超级边,所以最终答案为ans-super_edge(减去人工设置的超级边)。否则,如果ans>=2*super_edge,则表明至少有两条超级边,也就说明了:在实际的图中(没有超级点),至少有两个结点是没有入边的。然而没有入边的结点只能有1个或者没有(作为根节点),所以无解。
代码如下:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = INT_MAX;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e3+; struct Edge
{
int u, v, w;
}edge[]; //super_edge为超级点连向每个普通点的边权, root_pos用于记录实际的根节点。
int super_edge, root_pos;
int pre[MAXN], id[MAXN], vis[MAXN], in[MAXN]; int zhuliu(int root, int n, int m)
{
int res = ;
while()
{
for(int i = ; i<n; i++)
in[i] = INF;
for(int i = ; i<m; i++)
if(edge[i].u!=edge[i].v && edge[i].w<in[edge[i].v])
{
pre[edge[i].v] = edge[i].u;
in[edge[i].v] = edge[i].w;
//为什么可以这样记录实际的根节点呢?因为在main()函数中,我们设置超级点连向普通点的时候,
//边的下标从m开始,对应着结点0, m+1对应着结点1,………所以我们可以根据边的下标得出边的终点。
if(edge[i].u==root)
root_pos = i; } for(int i = ; i<n; i++)
if(i!=root && in[i]==INF)
return -; int tn = ;
memset(id, -, sizeof(id));
memset(vis, -, sizeof(vis));
in[root] = ;
for(int i = ; i<n; i++)
{
res += in[i];
int v = i;
while(vis[v]!=i && id[v]==- && v!=root)
{
vis[v] = i;
v = pre[v];
}
if(v!=root && id[v]==-)
{
for(int u = pre[v]; u!=v; u = pre[u])
id[u] = tn;
id[v] = tn++;
}
}
if(tn==) break;
for(int i = ; i<n; i++)
if(id[i]==-)
id[i] = tn++; for(int i = ; i<m; i++)
{
int v = edge[i].v;
edge[i].u = id[edge[i].u];
edge[i].v = id[edge[i].v];
if(edge[i].u!=edge[i].v)
edge[i].w -= in[v];
}
n = tn;
root = id[root];
}
return res;
} int main()
{
int n, m;
while(scanf("%d%d", &n, &m)!=EOF)
{
super_edge = ;
for(int i = ; i<m; i++)
{
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].w);
super_edge += edge[i].w;
} super_edge++;
for(int i = ; i<n; i++) //n为超级点,将超级点连向每一个题目中的点
{
edge[m+i].u = n;
edge[m+i].v = i;
edge[m+i].w = super_edge;
} int ans = zhuliu(n, n+, m+n);
if(ans==- || ans>=*super_edge) printf("impossible\n\n");
else printf("%d %d\n\n", ans-super_edge, root_pos-m);
}
}
HDU2121 Ice_cream’s world II —— 最小树形图 + 不定根 + 超级点的更多相关文章
- hdu2121 Ice_cream’s world II 最小树形图(难)
这题比HDU4009要难一些.做了4009,大概知道了最小树形图的解法.拿到这题,最直接的想法是暴力.n个点试过去,每个都拿来做一次根.最后WA了,估计是超时了.(很多题都是TLE说成WA,用了G++ ...
- HDU 2121 Ice_cream’s world II 最小树形图 模板
开始学习最小树形图,模板题. Ice_cream’s world II Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32 ...
- HDU 2121 Ice_cream’s world II 最小树形图
这个题就是需要求整个有向带权图的最小树形图,没有指定根,那就需要加一个虚根 这个虚根到每个点的权值是总权值+1,然后就可以求了,如果求出来的权值大于等于二倍的总权值,就无解 有解的情况,还需要输出最根 ...
- HDU4009 Transfer water —— 最小树形图 + 不定根 + 超级点
题目链接:https://vjudge.net/problem/HDU-4009 Transfer water Time Limit: 5000/3000 MS (Java/Others) Me ...
- hdu2121 Ice_cream's world II
hdu2121 Ice_cream's world II 给一个有向图,求最小树形图,并输出根节点 \(n\leq10^3,\ m\leq10^4\) 最小树形图 对于求无根最小树形图,可以建一个虚拟 ...
- hdu2121 - Ice_cream’s world II(朱刘算法,不固定根)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2121 题目意思大概是要你在一些城市中选一个做首都 , 要求首都都能到其他城市 , 道路花费要最少 , ...
- HDU2121 Ice_cream’s world II (最小树形图)
在建图的时候对原图进行加边 建立一个超级源点~ #include<cstdio> #include<algorithm> #include<cstring> usi ...
- HDU 2121——Ice_cream’s world II——————【最小树形图、不定根】
Ice_cream’s world II Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64 ...
- HDU 2121 Ice_cream’s world II 不定根最小树形图
题目链接: 题目 Ice_cream's world II Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
随机推荐
- Dev Express中Dock panel的使用
使用DockManager,添加DockPanel. 1,DockManager位于“导航和布局”分类中. 添加一个DockManager控件到窗体中以后,即是在当前窗体类中,添加一个DockMana ...
- InnoDB透明页压缩与稀疏文件
此文已由作者王慎为授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. MySQL 5.7中包括了很多让人耳目一新的新特性,其中就包括了InnoDB Transparent Pag ...
- sql模糊查询,解除绑定的单号
--610007570320-610007571319 1000张 delete from (select t.* from (select t1.bill_code, t1.bind_code, t ...
- hdu 1528 二分匹配
#include<stdio.h> #include<string.h> int map[100][100],mark[100],link[100],max2,k; int f ...
- docker改变镜像源
sudo echo “DOCKER_OPTS=\”\$DOCKER_OPTS –registry-mirror=http://your-id.m.daocloud.io -d\”” >> ...
- 骑士精神 (codevs 2449)
题目描述 Description 在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且有一个空位.在任何时候一个骑士都能按照骑士的走法(它可以走到和它横坐标相差为1,纵坐标相差为2或者横坐标 ...
- [NOIP1999] 普及组
回文数 /*By SilverN*/ #include<algorithm> #include<iostream> #include<cstring> #inclu ...
- 【BZOJ2982】combination(Lucas定理)
题意:求C(n,m) n,m<=200000000 思路:c(n,m)=c(n mod mo,m mod mo)*c(n div mo,m div mo) mod mo (n>=mo或m& ...
- ES6__函数的扩展
/** * 函数的扩展 * 1 为函数参数指定默认值 * 2 函数的 rest 参数 * 3 箭头函数 */ // ------------------------------------------ ...
- [Android] 随时拍图像处理部分总结及源码分享
http://blog.csdn.net/eastmount/article/details/45492065#comments [Android] 图像各种处理系列文章合集 http://blog. ...