洛谷 P3731 [HAOI2017]新型城市化【最大流(二分图匹配)+tarjan】
我到底怎么建的图为啥要开这么大的数组啊?!
神题神题,本来以为图论出不出什么花来了。
首先要理解‘团’的概念,简单来说就是无向图的一个完全子图,相关概念详见度娘。
所以关于团一般都是NP问题,只有二分图例外。而题目中有这样一句话“n座城市可以恰好被划分为不超过两个城市群”,并且给出的是没有的边,也就是这个图的补图,两个团就很显然表示这个补图是个二分图(我一开始还考虑1个团咋整后来发现根本不用整= =),模型就变成了二分图的最大独立集,考虑最大独立集=n-最大匹配,那么只要求出删掉哪些边会让最大匹配减少,也就是哪些边一定在最大匹配里即可。
先看一下大概步骤:
1.黑白染色,建出二分图(在这里用dinic求最大匹配因为懒得重建图这样tarjan直接按着满流边跑即可
2.dinic
3.顺着满流边用tarjan求scc
4.把两端不在同一个强连通分量里、两端不是s或t、满流的边加进ans数组里,排个序输出
为什么要这样做呢?
首先没满流的边一定不在最大匹配里就不说了。
然后对于两端能缩到一个scc里的边,一个点的一入一出都可能与它匹配,所以不一定在最大匹配里。
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1000005,inf=1e9;
int n,m,h[N],cnt,c[N],s,t,le[N],dfn[N],low[N],tot,st[N],top,bl[N],con,co,x[N],y[N];
bool v[N];
struct qwe
{
int ne,no,to,va;
}e[N*20];
struct qw
{
int x,y;
qw(const int X=0,const int Y=0)
{
x=X,y=Y;
if(x>y)
swap(x,y);
}
}ans[N];
bool cmp(const qw &a,const qw &b)
{
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{//cout<<u<<" "<<v<<endl;
add(u,v,w);
add(v,u,0);
}
void dfss(int u,int col)
{
c[u]=col;
v[u]=1;
for(int i=h[u];i;i=e[i].ne)
if(!v[e[i].to])
dfss(e[i].to,col^1);
}
bool bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{//cout<<u<<" "<<f<<endl;
if(!f||u==t)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(le[e[i].to]==le[u]+1&&e[i].va>0)
{
int t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
void dinic()
{
while(bfs())
dfs(s,inf);
}
void tarjan(int u)
{
dfn[u]=low[u]=++tot;
v[st[++top]=u]=1;
for(int i=h[u];i;i=e[i].ne)
if(!e[i].va)
{
if(!dfn[e[i].to])
{
tarjan(e[i].to);
low[u]=min(low[u],low[e[i].to]);
}
else if(v[e[i].to])
low[u]=min(low[u],dfn[e[i].to]);
}
if(dfn[u]==low[u])
{
con++;
while(st[top]!=u)
{
bl[st[top]]=con;
v[st[top--]]=0;
}
bl[st[top]]=con;
v[st[top--]]=0;
}
}
int main()
{
n=read(),m=read();
for(int i=1;i<=m;i++)
{
x[i]=read(),y[i]=read();
add(x[i],y[i],0);add(y[i],x[i],1);
}
for(int i=1;i<=n;i++)
if(!v[i])
dfss(i,2);
memset(h,0,sizeof(h));
cnt=1;
s=0,t=n+1;
for(int i=1;i<=n;i++)
{
if(c[i]==2)
ins(s,i,1);
else
ins(i,t,1);
}
for(int i=1;i<=m;i++)
{
if(c[x[i]]==2)
ins(x[i],y[i],1);
else
ins(y[i],x[i],1);
}//cout<<"OKBUILD"<<endl;
dinic();//cout<<"OKDINIC"<<endl;
memset(v,0,sizeof(v));
for(int i=1;i<=n;i++)
if(!dfn[i])
tarjan(i);
for(int i=2;i<=cnt;i+=2)
if(!e[i].va&&bl[e[i].no]!=bl[e[i].to]&&e[i].no!=s&&e[i].no!=t&&e[i].to!=s&&e[i].to!=t)
ans[++co]=qw(e[i].no,e[i].to);
sort(ans+1,ans+1+co,cmp);
printf("%d\n",co);
for(int i=1;i<=co;i++)
printf("%d %d\n",ans[i].x,ans[i].y);
return 0;
}
洛谷 P3731 [HAOI2017]新型城市化【最大流(二分图匹配)+tarjan】的更多相关文章
- P3731 [HAOI2017]新型城市化(tarjan+网络流)
洛谷 题意: 给出两个最大团的补图,现在要求增加一条边,使得最大最大团个数增加至少\(1\). 思路: 我们求出团的补图,问题可以转换为:对于一个二分图,选择删掉一条边,能够增大其最大独立集的点集数. ...
- 洛谷P2756 飞行员配对方案问题(二分图匹配)
传送门 一个基础的二分图匹配(虽然今天才学会) 因为不会匈牙利算法只好用网络流做 先新建一个超级源和超级汇,源往所有左边的点连边,所有右边的点往汇连边 然后跑一边最大流就好了 顺便记录一下匹配到谁就好 ...
- Luogu P3731 [HAOI2017]新型城市化
题目显然可以转化为求每一条边对二分图最大独立集的贡献,二分图最大独立集\(=\)点数\(-\)最大匹配数,我们就有了\(50pts\)做法. 正解的做法是在原图上跑\(Tarjan\),最开始我想复杂 ...
- 洛谷P4589 [TJOI2018]智力竞赛(二分答案 二分图匹配)
题意 题目链接 给出一个带权有向图,选出n + 1n+1条链,问能否全部点覆盖,如果不能,问不能覆盖的点权最小值最大是多少 Sol TJOI怎么净出板子题 二分答案之后直接二分图匹配check一下. ...
- 【洛谷 P1129】 [ZJOI2007]矩阵游戏 (二分图匹配)
题目链接 看到题目肯定首先会想到搜索. 然鹅数据范围\(n<=200\)这么大(其实也不算太大),肯定是不行的. 如果\((i,j)\)是\(1\),从\(i\)向\(j\)连一条边,表示第\( ...
- 洛谷P2526 [SHOI2001]小狗散步(二分图匹配)
题目背景 Grant喜欢带着他的小狗Pandog散步.Grant以一定的速度沿着固定路线走,该路线可能自交.Pandog喜欢游览沿途的景点,不过会在给定的N个点和主人相遇.小狗和主人同时从(X1,Y1 ...
- 洛谷 P2055 [ ZJOI 2009 ] 假期的宿舍 —— 二分图匹配
题目:https://www.luogu.org/problemnew/show/P2055 二分图匹配: 注意要连边的话对方必须有床! 代码如下: #include<iostream> ...
- 【洛谷P1963】[NOI2009]变换序列(二分图匹配)
传送门 题意: 现有一个\(0\)到\(n-1\)的排列\(T\),定义距离\(D(x,y)=min\{|x-y|,N-|x-y|\}\). 现在给出\(D(i, T_i)\),输出字典序最小的符合条 ...
- 【Luogu3731】[HAOI2017]新型城市化(网络流,Tarjan)
[Luogu3731][HAOI2017]新型城市化(网络流,Tarjan) 题面 洛谷 给定一张反图,保证原图能分成不超过两个团,问有多少种加上一条边的方法,使得最大团的个数至少加上\(1\). 题 ...
随机推荐
- 导师高茂源:用CODEX创新方法破解西方创新“秘密”(转)
高茂源,“CODEX创新体系”的创立者,精一学社的创业导师.“CODEX”是Copy.Optimize.Dimension.Ecosystem.Extra五个单词的缩写,该体系精炼了现在世界上流行的创 ...
- com.sun.xxx.utils不存在问题的解决
com.sun.org.apache.xml.internal.security.utils does not exist问题的解决 在网上找个很多的答案,但我的问题没有解决,睡一晚上后,被我误打误撞 ...
- jquery 关于ajax 及其son
<%@ page language="java" pageEncoding="UTF-8"%><%@include file="/c ...
- 下一代的中间件必须是支持docker规范的
下一代的中间件必须是支持docker规范的,这是中间件技术走向标准规范化的必经之路. 什么是 Docker? 答案是:Docker 是下一代的云计算模式.Docker 是下一代云计算的主流趋势. Do ...
- SAS学习笔记 - R的数据操作
1.对象 1.1 对象及其内在属性 R中的处理数据就是对象,每个对象可以包含多个元素.对象有两个内在属性:类型和长度.类型是对象元素的基本种类,共四种:数值型,字符型,复数型和逻辑型.对象的类型和长度 ...
- swift-for循环遍历,遍历字典,循环生成数组
// Playground - noun: a place where people can play import UIKit //--------------------------------- ...
- CxImage的编译及简单使用举例
1. 从http://sourceforge.net/projects/cximage/下载最新的CxImage 702源代码. 2. 解压缩后,以管理员身份打开CxImageFull_vc10. ...
- 在linux命令行中编译和运行java文件
同时加载编译多个jar包和java文件 在个人平常使用或者当我们把代码部署到linux服务器上的时候,我们经常需要通过命令行编译和运行java文件,网上关于这个的方法大多是通过 javac -cp f ...
- 大数据处理之道 (htmlparser获取数据<一>)
一:简单介绍 (1)HTML Parser是一个用于解析Html的Java的库.可採用线性或嵌套两种方式.主要用于网页的转换或提取,他有一些特性:过滤器filter,遍历器visitors,通常的标签 ...
- C++问题记录
问题idx: 1) 怎么在VS2010下新建一个像VC6.0 中那样的控制台C++程序. cdate: 2014-4-24 A1: VC6.0 对标准C++集的支持不是太好, VS2010也有一些吧, ...