51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下
首先推一下式子
\]
\]
\]
\]
然后可以向两个方向推:莫比乌斯或者欧拉
首先推欧拉函数的:
为什么转成乘二加一的形式?考虑矩阵。\( \sum_{i=1}{n}\sum_{j=1}{n}[gcd(i,j)1] \)的形式相当于把除了\( ij \)的数对\( (i,j) \)都算了两遍,所以乘二,这时只用算一遍的\( ij \)的数对也被算了两遍,这些数对中对答案有贡献的只有\( gcd(1,1)1 \)所以减去一
\]
\]
转成这种形式就可以分块+杜教筛做了
拒绝算时间复杂度(。
然后莫比乌斯反演(不想卡常所以没写代码,最后应该带个ln:
\]
\]
欧拉函数的代码,因为时间很充足,所以为了方便全部用了long long
#include<iostream>
#include<cstdio>
using namespace std;
const long long N=1000005,m=1000000,mod=1e9+7,inv2=500000004;
long long n,ans,q[N],tot,phi[N],ha[N];
bool v[N];
long long wk(long long x)
{
if(x>=mod)
x-=mod;
return x%mod*(x+1)%mod*inv2%mod;
}
long long slv(long long x)
{
if(x<=m)
return phi[x];
if(ha[n/x])
return ha[n/x];
long long re=wk(x);
for(long long i=2,la;i<=x;i=la+1)
{
la=x/(x/i);
re=(re-(la-i+1)%mod*slv(x/i)%mod)%mod;
}
return ha[n/x]=re;
}
int main()
{
phi[1]=1;
for(long long i=2;i<=m;i++)
{
if(!v[i])
{
q[++tot]=i;
phi[i]=i-1;
}
for(long long j=1;j<=tot&&q[j]%mod*i<=m;j++)
{
long long k=i%mod*q[j];
v[k]=1;
if(i%q[j]==0)
{
phi[k]=phi[i]%mod*q[j];
break;
}
phi[k]=phi[i]%mod*(q[j]-1);
}
}
for(long long i=1;i<=m;i++)
phi[i]=(phi[i]+phi[i-1])%mod;
scanf("%lld",&n);
for(long long i=1,la;i<=n;i=la+1)
{
la=n/(n/i);
ans=(ans+(wk(la)-wk(i-1))%mod*slv(n/i)%mod)%mod;
}
printf("%lld\n",((ans%mod*2-wk(n))%mod+mod)%mod);
return 0;
}
51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】的更多相关文章
- 51nod 1040 最大公约数之和(欧拉函数)
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 给出一个n,求1-n这n个数,同n的最大公约数的和.比如: ...
- 【BZOJ4805】欧拉函数求和(杜教筛)
[BZOJ4805]欧拉函数求和(杜教筛) 题面 BZOJ 题解 好久没写过了 正好看见了顺手切一下 令\[S(n)=\sum_{i=1}^n\varphi(i)\] 设存在的某个积性函数\(g(x) ...
- 51nod1040 最大公约数之和,欧拉函数或积性函数
1040 最大公约数之和 给出一个n,求1-n这n个数,同n的最大公约数的和.比如:n = 6时,1,2,3,4,5,6 同6的最大公约数分别为1,2,3,2,1,6,加在一起 = 15 看起来很简单 ...
- 51NOD 1237 最大公约数之和 V3 [杜教筛]
1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...
- 51nod 1237 最大公约数之和 V3(杜教筛)
[题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...
- 51nod 1237 最大公约数之和 V3
求∑1<=i<=n∑1<=j<=ngcd(i,j) % P P = 10^9 + 7 2 <= n <= 10^10 这道题,明显就是杜教筛 推一下公式: 利用∑d ...
- 51nod 1040最大公约数和(欧拉函数)
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 给出一个n,求1-n这n个数,同n的最大公约数 ...
- 51nod 1040 最大公约数的和 欧拉函数
1040 最大公约数之和 题目来源: rihkddd 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 给出一个n,求1-n这n个数,同n的最大公约数 ...
- 【51Nod 1363】最小公倍数之和(欧拉函数)
题面 传送门 题解 拿到式子的第一步就是推倒 \[ \begin{align} \sum_{i=1}^nlcm(n,i) &=\sum_{i=1}^n\frac{in}{\gcd(i,n)}\ ...
随机推荐
- Xcode 全局搜索失效的问题
早上手一快不知点了什么,然后全局搜索的功能就不起作用了.百度了一下才知道,原来把搜索范围给改了,改回来如下:
- 【Java源码】树-概述
树的基本术语 结点(node)由数据元素以及指向子树的地址构成. 若 X 结点有子树,则子树的根结点称为 X 的孩子(child)结点,相应地, X 称为其孩子的双亲(parents)结点,又称父母结 ...
- Topcoder 658 650 point
Topcoder 658 div2 500 加强版 不过给了<=20,暴力肯定不行. 然后想DP方程,先二分可能需要的最大次数mid; 然后根据 mid 构造 DP方程. 假设x[i]需要 x个 ...
- new String()理解
public static void main(String[] args){ String a=new String("ddy"); String b=new String(&q ...
- vue - 官方 - 上手
Vue和其它框架一样,有用CDN或本地JavaScript框架,国内我推荐 bootstrap cdn. 为什么很多人选择CDN呢? CDN:内容分发网络(不同区域不同服务器,更快),减少本地服务器压 ...
- 微信小程序实战之 pay(支付页面)
项目目录: 逻辑层: pay.js // pages/pay/pay.js Page({ /** * 页面的初始数据 */ data: { resultType: "", resu ...
- UICollectionView 具体解说学习
UICollectionView 和UITableView非常像,是APPLE公司在iOS 6后推出的用于处理图片这类UITableView 布局困难的控件,和UITableView 一样,它也有自己 ...
- 32位与4G内存限制
32位有4G内存限制,好像人所共知.但这个32位是指32位的CPU还是32位的操作系统? 答案是,都是.内存限制,是操作系统和硬件(CPU,也许还有内存控制器)共同制约的.CPU对应的是寻址物理地址, ...
- 2016/3/26 weixin 头像 昵称 网页优化显示 缺表中数据 只有代码 无显示效果
weixin.php <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...
- hexSHA1散列加密解密(不可逆)
1.maven引入codec和commons依赖: <dependency> <groupId>commons-codec</groupId> <artifa ...