BZOJ 3326 [SCOI2013]数数 (数位DP)
题目:
Fish 是一条生活在海里的鱼,有一天他很无聊,就开始数数玩。他数数玩的具体规则是:
确定数数的进制$B$
确定一个数数的区间$[L, R]$
对于$[L, R] $间的每一个数,把该数视为一个字符串,列出该字符串的每一个(连续的)子串对应的$B$进制数的值。
对所有列出的数求和。现在Fish 数了一遍数,但是不确定自己的结果是否正确了。由于$[L, R] $较大,他没有多余精力去验证是否正确,你能写一个程序来帮他验证吗?
非常恶心的一道数位$DP$
首先是数位$DP$的常规套路,用$[1,R]$的答案减去$[1,L-1]$的答案
对于一个$B$进制数$S$,令$f_{S}$表示$S$所有后缀串所表示数的和,$l_{S}$表示数$S$的位数,现在在它末尾填上一个数$x$,则$F_{Sx}=F_{S}*B+x*(l_{S}+1)$
令$g_{S}$表示$S$所有子串所表示数的和,则$g_{Sx}=g_{S}*B+F_{Sx}$
我们要对$[1,S]$里的所有数进行统计,令$F_{i,0}$表示从高到低遍历到了第i位,未达到上限的所有数的$f_{x}$,$F_{i,1}$是达到上限的
可得$F_{i+1,0}=\sum_{x=1}^{B}(F_{i,0}*B+x*\sum (l_{S}+1))=B^{2}F_{i,0}+\frac{B(B-1)}{2}\sum (l_{S}+1)$
而$F_{i,1}$转移到$F_{i+1,0}$的也是类似的
显然我们还要维护一个数组$L_{i}$,表示前i位数中出现的数的$l_{x}$之和
因为要加上$\sum (l_{S}+1)$,还需要维护一个$Sum_{i}$,表示前i位数中出现的数的数量
这两个数组都很好维护
最后就是统计答案了,令$G_{i,0}$表示从高到低遍历到了第i位,未达到上限的所有数的$g_{x}$之和,$G_{i,1}$是达到上限的
因为每个$G_{i,0}$都有$B$次被转移,所以$G_{i+1,0}=B\cdot G_{i,0}+F_{i+1,0}$
而$G_{i,1}$转移到$G_{i+1,0}$的情况也是类似的
注意前导零的处理,我的方法是每遍历到新的一位,1~B每个数都还会作为一个新数的开头(除了第一位),把都加入状态里即可
#include <cmath>
#include <queue>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N1 101000
#define N2 4201
#define M1 120
#define ll long long
#define dd double
#define uint unsigned int
#define idx(X) (X-'0')
using namespace std; const int mod=;
int gint()
{
int ret=,fh=;char c=getchar();
while(c<''||c>''){if(c=='-')fh=-;c=getchar();}
while(c>=''&&c<=''){ret=ret*+c-'';c=getchar();}
return ret*fh;
}
int n,m,B;
int f[N1][],g[N1][],s[N1][],l[N1][];
ll solve(int *a,int len)
{
memset(f,,sizeof(f));
memset(g,,sizeof(g));
memset(l,,sizeof(l));
memset(s,,sizeof(s));
ll ans=;
s[][]=a[]-,s[][]=;
l[][]=a[]-,l[][]=;
f[][]=1ll*a[]*(a[]-)/%mod;
f[][]=a[];
g[][]=f[][],g[][]=f[][];
for(int i=;i<len;i++)
{
s[i+][]=(1ll*s[i][]*B%mod + 1ll*s[i][]*a[i+]%mod + B-)%mod;
s[i+][]=s[i][];
l[i+][]=(1ll*(l[i][]+s[i][])*B%mod + 1ll*(l[i][]+s[i][])*a[i+]%mod + B-)%mod;
l[i+][]=(l[i][]+s[i][]);
f[i+][]=(1ll*f[i][]*B%mod*B%mod + 1ll*f[i][]*a[i+]%mod*B%mod + 1ll*(1ll*B*(B-)/%mod)*(l[i][]+s[i][]+)%mod + 1ll*(1ll*a[i+]*(a[i+]-)/%mod)*(l[i][]+s[i][])%mod)%mod;
f[i+][]=(1ll*f[i][]*B%mod + 1ll*a[i+]*(l[i][]+)%mod)%mod;
g[i+][]=(1ll*g[i][]*B%mod + 1ll*g[i][]*a[i+]%mod + f[i+][])%mod;
g[i+][]=(g[i][] + f[i+][])%mod;
}
return (g[len][]+g[len][])%mod;
}
int a[N1],b[N1],tmp[N1]; int main()
{
scanf("%d",&B);
scanf("%d",&n);
for(int i=n;i>=;i--)
tmp[i]=gint();
scanf("%d",&m);
for(int i=;i<=m;i++)
b[i]=gint();
tmp[]--;int k=;
while(tmp[k]<)
tmp[k]+=B,tmp[k+]--,k++;
if(tmp[n]==) n--;
for(int i=;i<=n;i++)
a[i]=tmp[n-i+];
ll ans1=solve(a,n);
ll ans2=solve(b,m);
printf("%lld\n",((ans2-ans1)%mod+mod)%mod);
return ;
}
BZOJ 3326 [SCOI2013]数数 (数位DP)的更多相关文章
- BZOJ_1662_[Usaco2006 Nov]Round Numbers 圆环数_数位DP
BZOJ_1662_[Usaco2006 Nov]Round Numbers 圆环数_数位DP Description 正如你所知,奶牛们没有手指以至于不能玩“石头剪刀布”来任意地决定例如谁先挤奶的顺 ...
- BZOJ_1026_[SCOI2009]windy数_数位DP
BZOJ_1026_[SCOI2009]windy数_数位DP 题意:windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道, 在A和B之 ...
- [BZOJ 1026] [SCOI 2009] Windy数 【数位DP】
题目链接:BZOJ - 1026 题目分析 这道题是一道数位DP的基础题,对于完全不会数位DP的我来说也是难题.. 对于询问 [a,b] 的区间的答案,我们对询问进行差分,求 [0,b] - [0,a ...
- [bzoj 1026]windy数(数位DP)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1026 分析: 简单的数位DP啦 f[i][j]表示数字有i位,最高位的数值为j的windy数总 ...
- bzoj 1026 [SCOI2009]windy数(数位DP)
1026: [SCOI2009]windy数 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4550 Solved: 2039[Submit][Sta ...
- BZOJ 3209 花神的数论题 数位DP+数论
题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...
- BZOJ 3209: 花神的数论题 [数位DP]
3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...
- 【BZOJ】1662: [Usaco2006 Nov]Round Numbers 圆环数(数位dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1662 这道题折腾了我两天啊-!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 果然 ...
- 【BZOJ】1026: [SCOI2009]windy数(数位dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1026 我果然很弱啊... 考虑数位dp.枚举每一位,然后限制下一位即可. 一定要注意啊!在dfs的时 ...
随机推荐
- LayUI table表格控件 如何显示 对象中的属性(针对Mybatis的级联查询--一对一情况)
1.entity如下: 2.Mybatis的Mapper.xml文件如下 <resultMap id="BaseResultMapPlus" type="dicIt ...
- 使用VirtualBox虚拟机搭建局域网
参考资料: http://www.awaimai.com/995.html https://my.oschina.net/cofecafe1/blog/206535 最近公司局域网网络改造,在改造前已 ...
- Ubuntu 16.04安装Wireshark进行抓包
技巧: 1.可以通过tcpdump抓取某个网卡的包,然后输出日志文件,通过Wireshark进行分析. 2.可以设置Wifi热点,然后通过手机连接这个热点,然后进行tcpdump的分析,然后输出日志文 ...
- bzoj 4519: [Cqoi2016]不同的最小割【最小割树Gomory–Hu tree】
算法详见:http://www.cnblogs.com/lokiii/p/8191573.html 求出点两两之间的最小割之后,把他们扔到map/set里跑即可 可怕的是map和set跑的时间竟然完全 ...
- bzoj 1625: [Usaco2007 Dec]宝石手镯【背包】
裸的01背包 #include<iostream> #include<cstdio> using namespace std; int c,n,w,v,f[20001]; in ...
- Luogu P2327 [SCOI2005]扫雷【递推/数学】By cellur925
题目传送门 推了好久啊.看来以后要多玩扫雷了qwq. 其实本题只有三种答案:0.1.2. 对于所有第一列,只要第一个数和第二个数确定后,其实整个数列就确定了,我们可以通过这个递推式得出 sec[i-] ...
- UTF-8格式的文本文件程序读取异常
最近在windows服务器上直接创建并手打输入配置参数,比如设置概率0.6,然后用java程序打开读取该参数,在本地linux环境下测试完全正常,但是一放到服务器上,就报NotNumber错误,查看了 ...
- springMVC @Valid不起作用
springmvc使用JSR-303进行表单验证不生效的问题 spring只是支持jsr-303验证,但却不提供jsr-303的实现,文档中提及了需要导入类如hibernate-validator等j ...
- ACM_折线中点
折线中点 Time Limit: 2000/1000ms (Java/Others) Problem Description: 给定平面上N个点P1, P2, ... PN,将他们按顺序连起来,形成一 ...
- 题解报告:hdu 2069 Coin Change(暴力orDP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2069 Problem Description Suppose there are 5 types of ...