【传送门】http://codeforces.com/problemset/problem/813/C

【题意】给定整数a,b,c,s,求使得  xa yzc值最大的实数 x,y,z , 其中x + y + z <= s. (1 ≤ S ≤ 103  , 0 ≤ a, b, c ≤ 103)

【题解】设P(x,y,z ) = xa yzc,则P(x,y,z)是递增的,要使 函数值尽可能地大,那么必取 x + y + z = s

问题转化成:已知限定条件  x + y + z = s, 求P(x,y,z)取得最大值的(x,y,z)

显然,这是运用拉格朗日乘数法的模板题。

【拉格朗日乘数法】

解决的问题模型 : 已知G(x,y,z) = 0

求F(x,y,z)最值(或者极值,一般情况下拉格朗日乘数法求得的极值点就是最值点)

设L(x,y,z) = F(x,y,z) + λG(x,y,z)

将L(x,y,z)分别对x,y,z求偏导,得到3个四元一次方程,加上原来的一个限定条件G(x,y,z) = 0,共得到4个方程,解4个未知数(x,y,z,λ)

求出极值点(x, y , z)即可。

最值只可能在边界处或者极值点处取到,一般情况下极值点就是最值点。

【回到本题】令G(x,y,z) = x + y + z - s , F(x,y,z) = alnx + blny + clnz  .用上述方法解出极值点(s*a/(a+b+c) , s*b/(a+b+c), s*c/(a+b+c))这就是所求答案。

注意a + b + c = 0的特判情况,还需要注意精度,题目要求1e-6,但是精度要达到1e-10以上才行,不然会WA,有点坑。

【AC代码】

#include<iostream>
#include<cstdio>
#include<string>
#include<algorithm>
#include<vector>
#include<cstring>
#include<iomanip>
using namespace std;
typedef long long ll; double s;
double a,b,c; int main(){
while(cin>>s){
cin>>a>>b>>c;
if(a + b + c == ){
cout<<1.0*s<<" "<<<<" "<<<<endl;
continue;
}
cout<<setiosflags(ios::fixed)<<setprecision()<<s/(a+b+c)*a<<" "<<s/(a+b+c)*b<<" "<<s/(a+b+c)*c<<endl;
}
}

CodeForces - 813C The Tag Game(拉格朗日乘数法,限制条件求最值)的更多相关文章

  1. ML(附录4)——拉格朗日乘数法

    基本的拉格朗日乘子法(又称为拉格朗日乘数法),就是求函数 f(x1,x2,...) 在 g(x1,x2,...)=C 的约束条件下的极值的方法.其主要思想是引入一个新的参数 λ (即拉格朗日乘子),将 ...

  2. BZOJ2876 [Noi2012]骑行川藏 【拉格朗日乘数法】

    题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...

  3. bzoj 2876: [Noi2012]骑行川藏【拉格朗日乘数法+二分】

    详见: http://blog.csdn.net/popoqqq/article/details/42366599 http://blog.csdn.net/whzzt/article/details ...

  4. [Math & Algorithm] 拉格朗日乘数法

    拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程.新学 ...

  5. 《University Calculus》-chaper12-多元函数-拉格朗日乘数法

    求解条件极值的方法:拉格朗日乘数法 基于对多元函数极值方法的了解,再具体的问题中我们发现这样一个问题,在求解f(x,y,z)的极值的时候,我们需要极值点落在g(x,y,z)上这种对极值点有约束条件,通 ...

  6. bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)

    题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...

  7. CodeChef TWOROADS(计算几何+拉格朗日乘数法)

    题面 传送门 简要题意:给出\(n\)个点,请求出两条直线,并最小化每个点到离它最近的那条直线的距离的平方和,\(n\leq 100\) orz Shinbokuow 前置芝士 给出\(n\)个点,请 ...

  8. BZOJ3775: 点和直线(计算几何+拉格朗日乘数法)

    题面 传送门 题解 劲啊-- 没有和\(Claris\)一样推,用了类似于\(Shinbokuow\)推已知点求最短直线的方法,结果\(WA\)了好几个小时,拿\(Claris\)代码拍了几个小时都没 ...

  9. 拉格朗日乘数法 和 KTT条件

    预备知识 令 \(X\) 表示一个变量组(向量) \((x_1, x_2, \cdots, x_n)\) 考虑一个处处可导的函数 \(f(X)\), 为了方便描述, 这里以二元函数为例 对于微分, 考 ...

随机推荐

  1. fossil 代理设置

    C:\>fossil user new Joe C:\>fossil user default Joe 设置账户 fossil setting proxy http://-:-fossil ...

  2. 网络流的$\mathfrak{Dinic}$算法

    网络流想必大家都知道,在这不过多赘述.网络流中有一类问题是让你求最大流,关于这个问题,许多计算机学家给出了许多不同的算法,在这里--正如标题所说--我们只介绍其中的一种--\(\tt{Dinic}\) ...

  3. C#获得DataTable的key值

    //获得dataTable的key值 List<string> keyList = new List<string>(); ; i < dt.Columns.Count; ...

  4. Mac更改显存

    今天尝试了 发现很有效果 不敢独享 所以贴一下,如果我火星了 ..就无视我吧 问题表现为: 1. 随机出现花屏,和 横线. 随机出现死机2. 随着再次渲染(例如桌面背景切换),花屏或横线会消失3. 当 ...

  5. Python使用三种方法实现PCA算法[转]

    主成分分析(PCA) vs 多元判别式分析(MDA) PCA和MDA都是线性变换的方法,二者关系密切.在PCA中,我们寻找数据集中最大化方差的成分,在MDA中,我们对类间最大散布的方向更感兴趣. 一句 ...

  6. LeetCode 买卖股票的最佳时机 II

    给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意:你不能同时参与多笔交易(你必须在再次 ...

  7. 【线段树】bzoj3585: mex

    非常精妙的线段树题 Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三 ...

  8. touch: cannot touch ‘/var/jenkins_home/copy_reference_file.log’: Permission denied

    docker 运行后, 执行docker logs -f myjenkins时报错: touch: cannot touch ‘/var/jenkins_home/copy_reference_fil ...

  9. Linux菜鸟起飞之路【二】Linux基本常识

    一.Unix操作系统基本常识 1.什么是Unix? Unix是一个计算机操作系统,是一个用来协调.管理和控制计算机硬件与软件资源的控制程序. 2.Unix操作系统的特点? 多用户与多任务.多用户表示在 ...

  10. Flux reference

    https://facebook.github.io/flux/docs/dispatcher.html#content 首先安装 npm install --save flux Dispatcher ...