【传送门】http://codeforces.com/problemset/problem/813/C

【题意】给定整数a,b,c,s,求使得  xa yzc值最大的实数 x,y,z , 其中x + y + z <= s. (1 ≤ S ≤ 103  , 0 ≤ a, b, c ≤ 103)

【题解】设P(x,y,z ) = xa yzc,则P(x,y,z)是递增的,要使 函数值尽可能地大,那么必取 x + y + z = s

问题转化成:已知限定条件  x + y + z = s, 求P(x,y,z)取得最大值的(x,y,z)

显然,这是运用拉格朗日乘数法的模板题。

【拉格朗日乘数法】

解决的问题模型 : 已知G(x,y,z) = 0

求F(x,y,z)最值(或者极值,一般情况下拉格朗日乘数法求得的极值点就是最值点)

设L(x,y,z) = F(x,y,z) + λG(x,y,z)

将L(x,y,z)分别对x,y,z求偏导,得到3个四元一次方程,加上原来的一个限定条件G(x,y,z) = 0,共得到4个方程,解4个未知数(x,y,z,λ)

求出极值点(x, y , z)即可。

最值只可能在边界处或者极值点处取到,一般情况下极值点就是最值点。

【回到本题】令G(x,y,z) = x + y + z - s , F(x,y,z) = alnx + blny + clnz  .用上述方法解出极值点(s*a/(a+b+c) , s*b/(a+b+c), s*c/(a+b+c))这就是所求答案。

注意a + b + c = 0的特判情况,还需要注意精度,题目要求1e-6,但是精度要达到1e-10以上才行,不然会WA,有点坑。

【AC代码】

#include<iostream>
#include<cstdio>
#include<string>
#include<algorithm>
#include<vector>
#include<cstring>
#include<iomanip>
using namespace std;
typedef long long ll; double s;
double a,b,c; int main(){
while(cin>>s){
cin>>a>>b>>c;
if(a + b + c == ){
cout<<1.0*s<<" "<<<<" "<<<<endl;
continue;
}
cout<<setiosflags(ios::fixed)<<setprecision()<<s/(a+b+c)*a<<" "<<s/(a+b+c)*b<<" "<<s/(a+b+c)*c<<endl;
}
}

CodeForces - 813C The Tag Game(拉格朗日乘数法,限制条件求最值)的更多相关文章

  1. ML(附录4)——拉格朗日乘数法

    基本的拉格朗日乘子法(又称为拉格朗日乘数法),就是求函数 f(x1,x2,...) 在 g(x1,x2,...)=C 的约束条件下的极值的方法.其主要思想是引入一个新的参数 λ (即拉格朗日乘子),将 ...

  2. BZOJ2876 [Noi2012]骑行川藏 【拉格朗日乘数法】

    题目链接 BZOJ 题解 拉格朗日乘数法 拉格朗日乘数法用以求多元函数在约束下的极值 我们设多元函数\(f(x_1,x_2,x_3,\dots,x_n)\) 以及限制\(g(x_1,x_2,x_3,\ ...

  3. bzoj 2876: [Noi2012]骑行川藏【拉格朗日乘数法+二分】

    详见: http://blog.csdn.net/popoqqq/article/details/42366599 http://blog.csdn.net/whzzt/article/details ...

  4. [Math & Algorithm] 拉格朗日乘数法

    拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程.新学 ...

  5. 《University Calculus》-chaper12-多元函数-拉格朗日乘数法

    求解条件极值的方法:拉格朗日乘数法 基于对多元函数极值方法的了解,再具体的问题中我们发现这样一个问题,在求解f(x,y,z)的极值的时候,我们需要极值点落在g(x,y,z)上这种对极值点有约束条件,通 ...

  6. bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)

    题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...

  7. CodeChef TWOROADS(计算几何+拉格朗日乘数法)

    题面 传送门 简要题意:给出\(n\)个点,请求出两条直线,并最小化每个点到离它最近的那条直线的距离的平方和,\(n\leq 100\) orz Shinbokuow 前置芝士 给出\(n\)个点,请 ...

  8. BZOJ3775: 点和直线(计算几何+拉格朗日乘数法)

    题面 传送门 题解 劲啊-- 没有和\(Claris\)一样推,用了类似于\(Shinbokuow\)推已知点求最短直线的方法,结果\(WA\)了好几个小时,拿\(Claris\)代码拍了几个小时都没 ...

  9. 拉格朗日乘数法 和 KTT条件

    预备知识 令 \(X\) 表示一个变量组(向量) \((x_1, x_2, \cdots, x_n)\) 考虑一个处处可导的函数 \(f(X)\), 为了方便描述, 这里以二元函数为例 对于微分, 考 ...

随机推荐

  1. 什么是Java内存模型中的happens-before

    Java内存模型JMM Java内存模型(即Java Memory Model , 简称JMM),本身是一种抽象的概念,并不真实存在,它描述的是一组规则或规范,通过这组规范定义了程序个各个变量(包括实 ...

  2. Bootstrap 默认/标准按钮

    Bootstrap 默认/标准按钮 <!DOCTYPE html><html><head><meta http-equiv="Content-Typ ...

  3. Memcache查看列出所有key方法

    Memcached查看列出所有key方法 测试的过程中,发现Memcached没有一个比较简单的方法可以直接象redis那样keys *列出所有的Session key,并根据key get对应的se ...

  4. substring substr slice 区别

    1. substring(start,end)  返回指定索引区间的字串,不改变原字符串 start 必需,开始位置的索引,一个非负的整数 end  可选,结束位置的索引(不包括其本身),如果未设置, ...

  5. 【模板】任意模数NTT

    题目描述: luogu 题解: 用$fft$水过(什么$ntt$我不知道). 众所周知,$fft$精度低,$ntt$处理范围小. 所以就有了任意模数ntt神奇$fft$! 意思是这样的.比如我要算$F ...

  6. Pycharm快捷键及Python常用转义符

    不管是windows.xshell或者pycharm,学会使用快捷键都会使学习工作达到事半功倍的效果.这篇博客收集了部分常用的pycharm快捷键,分享给大家,希望对大家有用. 1. 常用快捷键 Py ...

  7. ES5中新增的forEach等新方法的一些使用声明

    转载地址:http://www.zhangxinxu.com/wordpress/?p=3220 一.前言-索引 ES5中新增的不少东西,了解之对我们写JavaScript会有不少帮助,比如数组这块, ...

  8. ARM MMU

    关于MMU,以下几篇文章写得通俗易懂: s3c6410_MMU地址映射过程详述 追求卓越之--arm MMU详解 基于S3C6410的ARM11学习(十五) MMU来了 这里总结MMU三大作用: 1. ...

  9. PAT Basic 1017

    1017 A除以B(20 分) 本题要求计算 A/B,其中 A 是不超过 1000 位的正整数,B 是 1 位正整数.你需要输出商数 Q 和余数 R,使得 A=B×Q+R 成立. 输入格式: 输入在一 ...

  10. web项目架构