A sequence of numbers

                                                            Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768
K (Java/Others)

                                                                                        Total Submission(s): 4874    Accepted Submission(s): 1543

->Link<-

题意:给出一个数列(等差或等比)的前三项,求第K项对200907取余;

先来复习一下数列通项公式:

等差数列通项公式:An=a1+(n-1)d;n>=1;d为公差;

等比数列通项公式:An=a1*q^(n-1);q为公比;

虽然这公式有条件限制,但题目说了数列非递减;说明题目并没有那么叼,一般的公式就行;

同余定理:

同余这个概念最初是由德国数学家高斯发明的。同余的定义是这样的:
 两个整数,a,b,如果他们同时除以一个自然数m,所得的余数相同,则称a,b对于模m同余。。记作a≡b(mod.m)。读作:a同余于b模m。  同余的性质也比较多,主要有以下一些:

1.对于同一个除数,两个数之和(或差)与它们的余数之和(或差)同余。

2.对于同一个除数,两个数的乘积与它们余数的乘积同余。

3.对于同一个除数,如果有两个整数同余,那么它们的差就一  定能被这个除数整除。

4.对于同一个除数,如果两个数同余,那么他们的乘方仍然同余。

思路:分两种情况考虑,等差或等比,如果是等比的话用快速幂取模做很快即好,但等差的时候怎么取余呢?

原来同余定理有:(a+b)%c=(a%c+b%c)%c;

推导:a=k1*c+a%c,b=k2*c+b%c;(a+b)%c=((k1*c+a%c)+(k2*c+b%c)%c)%c即上述所示;

这样等差也好做了;

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define MOD 200907
ll a,b,c,k;
ll fun(ll a,ll b)//快速幂取模;
{
ll x=1;
while(b)
{
if(b&1)
x=x*(a%MOD)%MOD;
a=(a*a)%MOD;
b=b>>1;
}
return x;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
ll sum;
scanf("%lld%lld%lld%lld",&a,&b,&c,&k);
if(2*b==a+c)//等差;
{
ll x=b-a;
sum=(a%MOD+(((k-1)%MOD)*(x%MOD)))%MOD;
}
else
{
ll x=b/a;
sum=(a%MOD)*(fun(x,k-1)%MOD)%MOD;
}
printf("%lld\n",sum);
}
return 0;
}

关键是这个同余定理!!!

HDU-2817,同余定理+快速幂取模,水过~的更多相关文章

  1. hdu 1097 A hard puzzle 快速幂取模

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1097 分析:简单题,快速幂取模, 由于只要求输出最后一位,所以开始就可以直接mod10. /*A ha ...

  2. 题解报告:hdu 1061 Rightmost Digit(快速幂取模)

    Problem Description Given a positive integer N, you should output the most right digit of N^N. Input ...

  3. HDU 1061 Rightmost Digit (快速幂取模)

    题意:给定一个数,求n^n的个位数. 析:很简单么,不就是快速幂么,取余10,所以不用说了,如果不会快速幂,这个题肯定是周期的, 找一下就OK了. 代码如下: #include <iostrea ...

  4. hdu 4704(费马小定理+快速幂取模)

    Sum                                                                                Time Limit: 2000/ ...

  5. 【费马小定理+快速幂取模】ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies

    G. Give Candies There are N children in kindergarten. Miss Li bought them N candies. To make the pro ...

  6. 【2018 ICPC焦作网络赛 G】Give Candies(费马小定理+快速幂取模)

    There are N children in kindergarten. Miss Li bought them N candies. To make the process more intere ...

  7. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  8. HDU 1061 Rightmost Digit --- 快速幂取模

    HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...

  9. 杭电 2817 A sequence of numbers【快速幂取模】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2817 解题思路:arithmetic or geometric sequences 是等差数列和等比数 ...

随机推荐

  1. 题解报告:poj 2823 Sliding Window(单调队列)

    Description An array of size n ≤ 106 is given to you. There is a sliding window of size k which is m ...

  2. 题解报告:hdu 2093 考试排名

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2093 Problem Description C++编程考试使用的实时提交系统,具有即时获得成绩排名的 ...

  3. 2017广东工业大学程序设计竞赛决赛 G 等凹数字

    题意: Description 定义一种数字称为等凹数字,即从高位到地位,每一位的数字先非递增再非递减,不能全部数字一样,且该数是一个回文数,即从左读到右与从右读到左是一样的,仅形成一个等凹峰,如54 ...

  4. javascript动态创建div循环列表

    动态循环加载列表,实现vue中v-for的效果 效果图: 代码: var noApplicationRecord = document.getElementById('noApplicationRec ...

  5. 机器学习-Probabilistic interpretation

    Probabilistic interpretation,概率解释  解释为何线性回归的损失函数会选择最小二乘 表示误差,表示unmodeled因素或随机噪声,真实的y和预测出来的值之间是会有误差的, ...

  6. R Programming week1-Data Type

    Objects R has five basic or “atomic” classes of objects: character numeric (real numbers) integer co ...

  7. 关于TREEVIEW的ONSELECTEDNODECHANGED事件

    MSDN:http://msdn.microsoft.com/zh-cn/library/system.web.ui.webcontrols.treeview.selectednodechanged( ...

  8. 使用Qt5.7.0 VS2015版本生成兼容XP的可执行程序

    版权声明:本文为灿哥哥http://blog.csdn.net/caoshangpa原创文章,转载请标明出处. 一.直接使用VS2012/VS2013/VS2015生成XP兼容的可执行程序 Visua ...

  9. 分组密码_计数器(CTR)模式_原理及java实现

    一.原理: CTR模式是一种通过将逐次累加的计数器进行加密来生成密钥流的流密码,在CTR模式中,每个分组对应一个逐次累加的计数器,并通过对计数器进行加密来生成密钥流.最终的密文分组是通过将计数器加密得 ...

  10. CAD嵌套打印(网页版)

    当用户需要打印两个CAD控件的图纸时,可以采用嵌套打印实现.点击此处在线演示. 实现嵌套打印功能,首先将两个CAD控件放入网页中,js代码如下: <p align="center&qu ...