[国家集训队2]Tree I
https://www.zybuluo.com/ysner/note/1294263
题面
给你一个无向带权连通图,每条边是黑色或白色。让你求一棵最小权的恰好有need条白色边的生成树。
题目保证有解。
- \(n\leq5*10^4,m\leq10^5\)
解析
好像有个套路:
对于有个数要求的某种边,可以改变它们的权值,以改变它们加入最小生成树的顺序(包括移出最小生成树)。
改变量可以二分。因为改变量(包括符号)越大,加入的边就越少。
细节:
- 答案并不一定会出现在二分的判定中,所以要最后对答案单独计算一次。
- 在边权相同时,要优先加入白色边。
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define ll long long
#define re register
#define il inline
#define db double
#define eps 1e-5
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int N=1e5+100;
int n,m,k,f[N];
ll ans;
bool use[N];
struct dat{int u,v,w,t;bool operator < (const dat &o) const {return (w<o.w)||(w==o.w&&t<o.t);}}a[N<<1],b[N<<1];
il ll gi()
{
re ll x=0,t=1;
re char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il int find(re int x){return x==f[x]?x:f[x]=find(f[x]);}
il int check(re int x)
{
re ll tag=0,tot=0;ans=0;
fp(i,1,n) f[i]=i;
fp(i,1,m)
{
a[i]=b[i];
if(!a[i].t) a[i].w+=x;
}
sort(a+1,a+1+m);
fp(i,1,m)
{
re int u=find(a[i].u),v=find(a[i].v);
if(u^v) f[v]=u,ans+=a[i].w,tag+=(a[i].t==0),++tot;
}
return tag>=k;
}
int main()
{
n=gi();m=gi();k=gi();
fp(i,1,m)
{
a[i].u=gi()+1,a[i].v=gi()+1,a[i].w=gi();a[i].t=gi();
b[i]=a[i];
}
re int l=-105,r=105,gu=0;
while(l<=r)
{
re db mid=l+r>>1;
if(check(mid)) gu=mid,l=mid+1;
else r=mid-1;
}
check(gu);
printf("%lld\n",ans-gu*k);
return 0;
}
[国家集训队2]Tree I的更多相关文章
- luogu P2619 [国家集训队2]Tree I
题目链接 luogu P2619 [国家集训队2]Tree I 题解 普通思路就不说了二分增量,生成树check 说一下坑点 二分时,若黑白边权有相同,因为权值相同优先选白边,若在最有增量时出现黑白等 ...
- [国家集训队2012]tree(陈立杰)
[国家集训队2012]tree(陈立杰) 题目 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树.题目保证有解. INPUT 第一行V,E,need分别表示 ...
- P2619 [国家集训队2]Tree I(最小生成树+二分)
P2619 [国家集训队2]Tree I 每次二分一个$x$,每条白边加上$x$,跑最小生成树 统计一下满足条件的最小值就好了. to me:注意二分不要写挂 #include<iostream ...
- Luogu P2619 [国家集训队2]Tree I(WQS二分+最小生成树)
P2619 [国家集训队2]Tree I 题意 题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有\(need\)条白色边的生成树. 题目保证有解. 输入输出格式 输入格式 ...
- [国家集训队2012]tree(陈立杰) 题解(二分+最小生成树)
tree 时间限制: 3 Sec 内存限制: 512 MB 题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. 输入 第一行V, ...
- 数据结构(动态树):[国家集训队2012]tree(伍一鸣)
[问题描述] 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2:将树中原 ...
- [COGS 1799][国家集训队2012]tree(伍一鸣)
Description 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2 ...
- 洛谷P2619 [国家集训队2]Tree I(带权二分,Kruscal,归并排序)
洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(nee ...
- P2619 [国家集训队2]Tree I
Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need分别表示点数,边数和需要的白色 ...
- cogs1799 [国家集训队2012]tree(伍一鸣)
LCT裸题 注意打标记之间的影响就是了 这个膜数不会爆unsigned int #include<cstdio> #include<cstdlib> #include<a ...
随机推荐
- 性能测试培训day2
上节课 性能测试,多线程.协议.场景 实施:1,脚本开发 运行 排错(看回放,然后view-test_results,看业务) 参数化.关联.检查点.事务.思考时间.集合点 参数化:不做参数化的话, ...
- UVa 122 树的层次遍历
题意: 给定一颗树, 按层次遍历输出. 分析: 用数组模拟二叉树, bfs即可实现层次遍历 #include <bits/stdc++.h> using namespace std; st ...
- UVA 253 Cube painting(枚举 模拟)
题意: 按如图的顺序给定2个骰子的颜色(只有r.b.g三种颜色) 问2个骰子是否一模一样 如 可表示为“rbgggr” 和 “rggbgr”, 第二个就是绕着Z轴顺时针旋转90度与第一个相同的骰子. ...
- PAT 1073. 多选题常见计分法
PAT 1073. 多选题常见计分法 批改多选题是比较麻烦的事情,有很多不同的计分方法.有一种最常见的计分方法是:如果考生选择了部分正确选项,并且没有选择任何错误选项,则得到50%分数:如果考生选择了 ...
- redis & macOS & python
redis & macOS & python how to install python 3 on mac os x? https://docs.python.org/3/using/ ...
- HDU 4479 权递增的最短路问题
题目大意: 找一条节点 1 到节点 N 的最短路,保证这条路上每一条边都比前一条边长 dp[i] 表示在当前状态下1到i的最小值 先将所有边根据边的长度排一个序,再每次取出同一段相同长度的边去更新当前 ...
- bzoj1052 [HAOI2007]覆盖问题 - 贪心
Description 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他决定用3个L*L的正方形塑料薄膜将小 ...
- [K/3Cloud] 如何代码中动态设置当前活动页签
this.GetControl<TabControl>(key).SelectedIndex=目标Index Ps:如下方式隐藏页签: this.View.GetControl(" ...
- Linux下汇编语言学习笔记15 ---
这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...
- request详究
本文主要是对在学习过程中遇到的request用法进行归纳总结,彻底的搞明白request在jsp中的作用. 百度百科的介绍如下: Request对象的作用是与客户端交互,收集客户端的Form.Cook ...