题面

传送门

题解

lxl大毒瘤

我们考虑莫队,在移动端点的时候相当于我们需要快速计算一个区间内和当前数字异或和中\(1\)的个数为\(k\)的数有几个,而这个显然是可以差分的,也就是\([l,r]\)的询问可以拆成\([1,r]-[1,l-1]\)

我们考虑莫队移动指针的过程,以\([l,r]\)移动左指针到\(p\)为例,要减去的答案是\(l\)和\([1,r]-[1,l-1]\),\(l+1\)和\([1,r]-[1,l]\),...,总的来说,我们我们要对于\([1,r]\)这个前缀计算\([l,p-1]\)的答案,并对每一个\(i\)计算出它和\([1,i-1]\)的答案并做个前缀和

对于前面的,因为前缀是固定的,我们可以在\(r\)上面开一个\(vector\),然后对于每一个\(r\),枚举所有的\([l,p-1]\)暴力加上贡献。所以我们现在需要维护一个\(O(n)\)次插入和\(O(m\sqrt{m})\)次询问的数据结构,扫描线的话可以做到\(O({14\choose 7})\)插入和\(O(1)\)查询,复杂度足够了

然后是后面的,用上面那个数据结构就可以了

//minamoto
#include<bits/stdc++.h>
#define R register
#define pb push_back
#define inline __inline__ __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
typedef long long ll;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int K=-1,Z=0;
inline void Ot(){fwrite(sr,1,K+1,stdout),K=-1;}
void print(R ll x){
if(K>1<<20)Ot();if(x<0)sr[++K]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++K]=z[Z],--Z);sr[++K]='\n';
}
const int N=2e5+5;
int a[N],bl[N],st[N],blo,top,n,m,k;ll s1[N],s2[N],s[N],ret[N],ans[N],res;
struct node{
int l,r,id;
inline node(){}
inline node(R int li,R int ri,R int ii):l(li),r(ri),id(ii){}
inline bool operator <(const node &b)const{return bl[l]==bl[b.l]?r<b.r:l<b.l;}
}q[N];vector<node>Q[N];
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read(),k=read(),blo=250;
for(R int i=0,c,x;i<16384;++i){
c=0;
for(x=i;x;x^=x&-x)++c;
if(c==k)st[++top]=i;
}
fp(i,1,n)a[i]=read(),bl[i]=(i-1)/blo+1;
fp(i,1,m)q[i].l=read(),q[i].r=read(),q[i].id=i;
sort(q+1,q+1+m);
for(R int i=1,l=q[1].r+1,r=q[1].r;i<=m;++i){
if(l<q[i].l)Q[r].pb(node(l,q[i].l-1,q[i].id<<1));
else if(l>q[i].l)Q[r].pb(node(q[i].l,l-1,q[i].id<<1));
l=q[i].l;
if(r<q[i].r)Q[l-1].pb(node(r+1,q[i].r,q[i].id<<1|1));
else if(r>q[i].r)Q[l-1].pb(node(q[i].r+1,r,q[i].id<<1|1));
r=q[i].r;
}
fp(i,1,n){
s1[i]=s1[i-1]+s[a[i]];
fp(k,1,top)++s[a[i]^st[k]];
s2[i]=s2[i-1]+s[a[i]];
for(vector<node>::iterator it=Q[i].begin();it!=Q[i].end();++it)
fp(k,it->l,it->r)ret[it->id]+=s[a[k]];
}
for(R int i=1,l=q[1].r+1,r=q[1].r;i<=m;++i){
if(l<q[i].l)res-=ret[q[i].id<<1]-s2[q[i].l-1]+s2[l-1];
else if(l>q[i].l)res+=ret[q[i].id<<1]-s2[l-1]+s2[q[i].l-1];
l=q[i].l;
if(r<q[i].r)res+=s1[q[i].r]-s1[r]-ret[q[i].id<<1|1];
else if(r>q[i].r)res-=s1[r]-s1[q[i].r]-ret[q[i].id<<1|1];
r=q[i].r,ans[q[i].id]=res;
}
fp(i,1,m)print(ans[i]);
return Ot(),0;
}

洛谷P4887 第十四分块(前体)(二次离线莫队)的更多相关文章

  1. [洛谷P4887]第十四分块(前体)

    题目大意: 给定一个长度为\(n\)的序列\(a\),\(k\),和\(m\)次询问. 每次询问给定区间\([l,r]\),求满足\(l\leqslant i< j\leqslant r\)且\ ...

  2. P4887 第十四分块(前体) 莫队

    题意: 给你一个序列,每次询问l,r问多少个a[i]^a[j]有k个1,k固定. 序列长度1e5,a[i]<=2^14 时限1s,空间40M 题解: 个人其实开始没什么思路,看了题解也好久,题解 ...

  3. 洛谷P4689 [Ynoi2016]这是我自己的发明(莫队,树的dfn序,map,容斥原理)

    洛谷题目传送门 具体思路看别的题解吧.这里只提两个可能对常数和代码长度有优化的处理方法. I 把一个询问拆成\(9\)个甚至\(16\)个莫队询问实在是有点珂怕. 发现询问的一边要么是一个区间,要么是 ...

  4. 【洛谷5398】[Ynoi2018]GOSICK(二次离线莫队)

    题目: 洛谷 5398 当我刚学莫队的时候,他们告诉我莫队能解决几乎所有区间问题: 现在,当我发现一个区间问题似乎难以用我所了解的莫队解决的时候,他们就把这题的正解叫做 XXX 莫队.--题记 (以上 ...

  5. 洛谷 P4887 -【模板】莫队二次离线(第十四分块(前体))(莫队二次离线)

    题面传送门 莫队二次离线 mol ban tea,大概是这道题让我第一次听说有这东西? 首先看到这类数数对的问题可以考虑莫队,记 \(S\) 为二进制下有 \(k\) 个 \(1\) 的数集,我们实时 ...

  6. Luogu4887 第十四分块(前体)

    sto \(lxl\) orz 考虑莫队,每次移动端点,我们都要询问区间内和当前数字异或有 \(k\) 个 \(1\) 的数字个数 询问 \([l,r]\) 可以再次离线,拆成询问 \([1,l-1] ...

  7. 【LuoguP4887】第十四分块(前体)

    题目链接 题意 区间两数异或在二进制下有 \(k\) 个 \(1\) 的对数. Sol 普通莫队的话,如果要实时维护好区间内的答案需要支持区间对一个数求答案. 直接做不是很好做,容易发现其实这也就是一 ...

  8. 【洛谷1494】[国家集训队] 小Z的袜子(莫队)

    点此看题面 大致题意: 有\(N\)只从\(1\sim N\)编号的袜子,告诉你每只袜子的颜色,\(M\)组询问,每组询问给你一个区间\([L\sim R]\),让你求出小Z随机抽出\(2\)只袜子时 ...

  9. 洛谷P5398 [Ynoi2018]GOSICK(二次离线莫队)

    题面 传送门 题解 维包一生推 首先请确保您会二次离线莫队 那么我们现在的问题就是怎么转移了,对于\(i\)和前缀\([1,r]\)的贡献,我们拆成\(b_i\)和\(c_i\)两部分,其中\(b_i ...

随机推荐

  1. 全文搜索(AB-2)-权重

    概念 权重是一个相对的概念,针对某一指标而言.某一指标的权重是指该指标在整体评价中的相对重要程度.权重是要从若干评价指标中分出轻重来,一组评价指标体系相对应的权重组成了权重体系. 释义 等同于比重   ...

  2. SQL Server 2008如何创建定期自动备份任务

    我们知道,利用SQL Server 2008数据库可以实现数据库的定期自动备份.方法是用SQL SERVER 2008自带的维护计划创建一个计划对数据库进行备份,下面我们将SQL SERVER 200 ...

  3. hdu 2433 Travel (最短路树)

     One day, Tom traveled to a country named BGM. BGM is a small country, but there are N (N <= 100) ...

  4. Sumdiv(poj1845)

    题意:求A^B的因子的和. /* 首先将A分解 A=p1^a1*p2^a2*...*pn*an A^B=p1^a1B*p2^a2B*...*pn*anB 因子之和sum=(1+p1+p1^2+...+ ...

  5. 关于jquery stopPropagation()阻止冒泡事件

    我们经常会遇到点击两个或者多个重叠的层事件的时候,往往点击最里的的一层会接连触发外面的点击事件.这时候就需要用到stopPropagation事件即阻止冒泡事件html代码如下<!DOCTYPE ...

  6. ArcGIS Engine效率探究——要素的添加和删除、属性的读取和更新

    ArcGIS Engine效率探究——要素的添加和删除.属性的读取和更新 来自:http://blog.csdn.net/freewaywalker/article/details/23703863 ...

  7. ecstore

  8. SGU 439 A Secret Book

    解法: 对于第二个串,循环移动能得到的字典序最小的串,可以直接用最小表示法搞定. 然后用最小表示的第二个串和第一个串做两次扩展KMP,一次正常求,另外一次将两个串都反转一下,然后扫一遍ex[]数组 # ...

  9. SSD硬盘安装系统后要做的事

    1***cmd>fsutil behavior query DisableDeleteNotify 0如果返回值是0,则代表TRIM处于开启状态:反之如果返回值是1,则代表TRIM处于关闭状态2 ...

  10. react 项目实战(四)组件化表单/表单控件 高阶组件

    高阶组件:formProvider 高阶组件就是返回组件的组件(函数) 为什么要通过一个组件去返回另一个组件? 使用高阶组件可以在不修改原组件代码的情况下,修改原组件的行为或增强功能. 我们现在已经有 ...