题目链接

Description

Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.

Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same location as before, but ends up facing the opposite direction. A cow that starts out facing forward will be turned backward by the machine and vice-versa.

Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.

Input

Line 1: A single integer: N

Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward.

Output

Line 1: Two space-separated integers: K and M

Sample Input

7

B

B

F

B

F

B

B

Sample Output

3 3

Hint

For K = 3, the machine must be operated three times: turn cows (1,2,3), (3,4,5), and finally (5,6,7)

分析:

从第一个开始找如果当前为B 就需要改变 改变i到i+k-1的位置

一直找到n-k+1处 之后判断从n-k+2到n是否满足了题意 注意不要真的去修改

用一个sum值标记前面k-1个修改了多少次用来决定当前的是否要修改 利用尺取法 即前后推进

代码:

#include<stdio.h>
#include<string.h>
int a[5100],n,flag[5100];
int solve(int k)
{
int i;
memset(flag,0,sizeof(flag));//flag[i]表示区间[i,i+k-1] 是否需要翻转
int sum=0,cnt=0;//前k-1个转变的次数
for(i=1; i<=n-k+1; i++) //sum记录走到当前i,其前面k-1个翻转了多少次
{
if(i-k>=1)///因为每次翻转的是k个,
{
sum-=flag[i-k];
}
if(a[i]==0&&sum%2==0)///如果是B 且前面翻转了偶数次 仍旧需要翻转
{
flag[i]=1;
sum+=flag[i];
cnt++;
}
else if(a[i]==1&&sum%2==1)///如果是F 且前面翻转了奇数次
{
flag[i]=1;
sum+=flag[i];
cnt++;
}
// printf("i=%d flag[i]=%d\n",i,flag[i]);
} for(i; i<=n; i++)
{
if(i-k>=1)
{
sum-=flag[i-k];
}
///这就相当于还没有翻转好
if(sum%2==0&&a[i]==0) return -1;
else if(sum%2==1&&a[i]==1) return -1;
}
return cnt;
} int main()
{
int i,k,mn;
char s[2];
while(scanf("%d",&n)!=EOF)
{
mn=100010000;
for(i=1; i<=n; i++)
{
scanf("%s",s);
if(s[0]=='B') a[i]=0;
else if(s[0]=='F') a[i]=1;
}
// for(int i=1;i<=n;i++)
// printf("%d",a[i]);
// printf("\n");
k=1;
for(i=1; i<=n; i++)///i是指对应的间距
{
int mid=solve(i);///mid是指在相应的间距下的操作次数
///printf("k=%d,cnt=%d\n",i,mid);
if(mid==-1) continue;///在这个间距k下不能满足情况
if(mn>mid)
{
mn=mid;
k=i;
}
}
printf("%d %d\n",k,mn);
}
return 0;
}

POJ 3276 Face The Right Way (尺取法)的更多相关文章

  1. POJ 3061 (二分+前缀和or尺取法)

    题目链接: http://poj.org/problem?id=3061 题目大意:找到最短的序列长度,使得序列元素和大于S. 解题思路: 两种思路. 一种是二分+前缀和.复杂度O(nlogn).有点 ...

  2. POJ 3320 Jessica's Reading Problem 尺取法

    Description Jessica's a very lovely girl wooed by lots of boys. Recently she has a problem. The fina ...

  3. poj 3320 jessica's Reading PJroblem 尺取法 -map和set的使用

    jessica's Reading PJroblem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9134   Accep ...

  4. poj 2566Bound Found(前缀和,尺取法)

    http://poj.org/problem?id=2566: Bound Found Time Limit: 5000MS   Memory Limit: 65536K Total Submissi ...

  5. POJ 3320 Jessica's Reading Problem 尺取法/map

    Jessica's Reading Problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7467   Accept ...

  6. POJ 3320 尺取法,Hash,map标记

    1.POJ 3320 2.链接:http://poj.org/problem?id=3320 3.总结:尺取法,Hash,map标记 看书复习,p页书,一页有一个知识点,连续看求最少多少页看完所有知识 ...

  7. POJ 3320 Jessica‘s Reading Problem(哈希、尺取法)

    http://poj.org/problem?id=3320 题意:给出一串数字,要求包含所有数字的最短长度. 思路: 哈希一直不是很会用,这道题也是参考了别人的代码,想了很久. #include&l ...

  8. 尺取法 poj 2566

    尺取法:顾名思义就是像尺子一样一段一段去取,保存每次的选取区间的左右端点.然后一直推进 解决问题的思路: 先移动右端点 ,右端点推进的时候一般是加 然后推进左端点,左端点一般是减 poj 2566 题 ...

  9. POJ 3320 尺取法(基础题)

    Jessica's Reading Problem Description Jessica's a very lovely girl wooed by lots of boys. Recently s ...

随机推荐

  1. TCP系列15—重传—5、Linux中RTO的计算

    之前我们介绍的都是协议中给出的RTO计算方法,下面我们看一下linux实现中RTO的计算方法.在linux中维护了srtt.mdev.mdev_max.rttvar.rtt_seq几个状态变量用来计算 ...

  2. js jQuery 判断跳转是手机还是电脑

    <script type="text/javascript"> $(function () { var system = {}; var p = navigator.p ...

  3. phpcms 最多上传 10 个附件 解决办法

    修改文件:/phpcms/libs/classes/form.class.php

  4. Swoole和Swoft的那些事 (Http/Rpc服务篇)

    https://www.jianshu.com/p/4c0f625d5e11 Swoft在PHPer圈中是一个门槛较高的Web框架,不仅仅由于框架本身带来了很多新概念和前沿的设计,还在于Swoft是一 ...

  5. sql sever 数据表

    对视图进行操作,要在第三块区域进行添加记录操作,回车,然后会同步到所有相关数据表中. 记录不是列,而是行,不要混淆. 第二块区域是各个属性,就是说明: 第一块区域是要进行显示的字段,选中什么 显示什么 ...

  6. matlab中的静态变量

    persistent X Y Z 将X,Y,Z定义为在其声明处的函数的局部变量.然而,这些变量的值在函数调用期间在内存中保存(应该是堆区).Persistent 变量和global(全局)变量相似,因 ...

  7. 【题解】Atcoder ARC#67 F-Yakiniku Restaurants

    觉得我的解法好简单,好优美啊QAQ 首先想想暴力怎么办.暴力的话,我们就枚举左右端点,然后显然每张购物券都取最大的值.这样的复杂度是 \(O(n ^{2} m)\) 的.但是这样明显能够感觉到我们重复 ...

  8. 【题解】HNOI2004敲砖块

    题目传送门:洛谷1437 决定要养成随手记录做过的题目的好习惯呀- 这道题目乍看起来和数字三角形有一点像,但是仔细分析就会发现,因为选定一个数所需要的条件和另一个数所需要的条件会有重复的部分,所以状态 ...

  9. POJ3041:Asteroids——题解

    http://poj.org/problem?id=3041 题目大意:激光可以干掉一整行或一整列陨石,求最少激光次数. —————————————————— 二分图匹配,对于每一个陨石将它的横纵坐标 ...

  10. BZOJ4571:[SCOI2016]美味——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4571 https://www.luogu.org/problemnew/show/P3293 一家 ...