A - Til the Cows Come Home

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

* Line 1: Two integers: T and N

* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

Sample Output

90

Hint

INPUT DETAILS:

There are five landmarks.

OUTPUT DETAILS:

Bessie can get home by following trails 4, 3, 2, and 1.

 
 
裸的最短路,但是wa了两次,看了别人的博客,说可能存在重边的可能,所以在输入两节点距离时,加入去重就AC了。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int maxn=1200;
const int INF=1e9;
bool vis[maxn];
int d[maxn];
int w[maxn][maxn];
int T,N;
void Dijkstra(int st){ for(int i=0;i<N;i++){ int x,m=INF;
for(int y=N;y>=1;y--){ if(!vis[y]&&d[y]<=m)
m=d[x=y];
}
vis[x]=1;
for(int y=N;y>=1;y--){ d[y]=min(d[y],d[x]+w[x][y]);
}
}
printf("%d\n",d[1]);
}
void init(){ for(int i=0;i<=N;i++){ d[i]=(i==N?0:INF);
for(int j=0;j<=N;j++){ if(i==j)
w[i][j]=0;
else
w[i][j]=w[j][i]=INF;
}
}
memset(vis,0,sizeof(vis));
}
int main(){ while(scanf("%d%d",&T,&N)!=EOF){ init();
for(int i=1;i<=T;i++){ int u,v,dw;
scanf("%d%d%d",&u,&v,&dw);
w[u][v]=w[v][u]=min(dw,w[u][v]);//去重
}
Dijkstra(N);
}
return 0;
}

  

POj2387——Til the Cows Come Home——————【最短路】的更多相关文章

  1. POJ2387 Til the Cows Come Home (最短路 dijkstra)

    AC代码 POJ2387 Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to ...

  2. POJ-2387 Til the Cows Come Home ( 最短路 )

    题目链接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...

  3. Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)

    Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...

  4. POJ2387 Til the Cows Come Home(SPFA + dijkstra + BallemFord 模板)

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37662   Accepted ...

  5. (Dijkstra) POJ2387 Til the Cows Come Home

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 81024   Accepted ...

  6. poj2387 Til the Cows Come Home 最短路径dijkstra算法

    Description Bessie is out in the field and wants to get back to the barn to get as much sleep as pos ...

  7. poj2387 Til the Cows Come Home

    解题思路:最短路的模板题,注意一个细节处理即可. 见代码: #include<cstdio> #include<cstring> #include<algorithm&g ...

  8. POJ2387 Til the Cows Come Home 【Dijkstra】

    题目链接:http://poj.org/problem?id=2387 题目大意; 题意:给出两个整数T,N,然后输入一些点直接的距离,求N和1之间的最短距离.. 思路:dijkstra求单源最短路, ...

  9. POJ-2387.Til the Cows Come Home.(五种方法:Dijkstra + Dijkstra堆优化 + Bellman-Ford + SPFA + Floyd-Warshall)

    昨天刚学习完最短路的算法,今天开始练题发现我是真的菜呀,居然能忘记邻接表是怎么写的,真的是菜的真实...... 为了弥补自己的菜,我决定这道题我就要用五种办法写出,并在Dijkstra算法堆优化中另外 ...

随机推荐

  1. LightOJ 1234 Harmonic Number(打表 + 技巧)

    http://lightoj.com/volume_showproblem.php?problem=1234 Harmonic Number Time Limit:3000MS     Memory ...

  2. DIOCP (一) DIOCP常见问题。

    1,IOCP是什么? 答:IOCP是windows下的服务器技术,并不是所有windows都能使用IOCP,只能在支持IOCP的windows操作系统上使用. 2,DIOCP是什么? 答:DIOCP是 ...

  3. linux命令之网络管理命令(上)

    1.ifconfig:配置或显示网络接口信息 该命令用于配置网卡IP地址等网络参数或显示当前网络的接口状态,该命令配置网卡信息时必须要以root用户的身份来执行. 参数选项 说明 up 激活指定的网络 ...

  4. dataframe初始化

  5. OCP换考题了,052新考题及答案整理-第17题

    17.Which two statements are true about tablespaces? A) A database can contain multiple undo tablespa ...

  6. 为什么我会选择走 Java 这条路?

    阅读本文大概需要 2.8 分钟.   作者:黄小斜 文章来源:微信公众号[程序员江湖] 最近有一些小伙伴问我,为什么当初选择走Java这条路,为什么不做C++.前端之类的方向呢,另外还有一些声音:研究 ...

  7. 【算法笔记】B1045 快速排序

    1045 快速排序 (25 分)   著名的快速排序算法里有一个经典的划分过程:我们通常采用某种方法取一个元素作为主元,通过交换,把比主元小的元素放到它的左边,比主元大的元素放到它的右边. 给定划分后 ...

  8. ThreadFactory类的使用

    之前创建线程的话,基本上是使用new Thread(),或者是将任务提交到线程池执行.今天看了一下洁城浩的<图解java多线程设计模式>突然看到还可以使用ThreadFactory来创建一 ...

  9. stark - 3 ⇲自动生成URL及视图

    以往建立了一张表,需要 1.为每张表创建4个url 2.为每张表创建4个视图函数 urlpatterns = [ url('^role/list/$',role.role_list,name='rol ...

  10. python3 zip压缩

    参考: https://docs.python.org/3/library/zipfile.html https://zhidao.baidu.com/question/149840976436638 ...