A - Til the Cows Come Home

Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

* Line 1: Two integers: T and N

* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

Sample Output

90

Hint

INPUT DETAILS:

There are five landmarks.

OUTPUT DETAILS:

Bessie can get home by following trails 4, 3, 2, and 1.

 
 
裸的最短路,但是wa了两次,看了别人的博客,说可能存在重边的可能,所以在输入两节点距离时,加入去重就AC了。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int maxn=1200;
const int INF=1e9;
bool vis[maxn];
int d[maxn];
int w[maxn][maxn];
int T,N;
void Dijkstra(int st){ for(int i=0;i<N;i++){ int x,m=INF;
for(int y=N;y>=1;y--){ if(!vis[y]&&d[y]<=m)
m=d[x=y];
}
vis[x]=1;
for(int y=N;y>=1;y--){ d[y]=min(d[y],d[x]+w[x][y]);
}
}
printf("%d\n",d[1]);
}
void init(){ for(int i=0;i<=N;i++){ d[i]=(i==N?0:INF);
for(int j=0;j<=N;j++){ if(i==j)
w[i][j]=0;
else
w[i][j]=w[j][i]=INF;
}
}
memset(vis,0,sizeof(vis));
}
int main(){ while(scanf("%d%d",&T,&N)!=EOF){ init();
for(int i=1;i<=T;i++){ int u,v,dw;
scanf("%d%d%d",&u,&v,&dw);
w[u][v]=w[v][u]=min(dw,w[u][v]);//去重
}
Dijkstra(N);
}
return 0;
}

  

POj2387——Til the Cows Come Home——————【最短路】的更多相关文章

  1. POJ2387 Til the Cows Come Home (最短路 dijkstra)

    AC代码 POJ2387 Til the Cows Come Home Bessie is out in the field and wants to get back to the barn to ...

  2. POJ-2387 Til the Cows Come Home ( 最短路 )

    题目链接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...

  3. Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)

    Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...

  4. POJ2387 Til the Cows Come Home(SPFA + dijkstra + BallemFord 模板)

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 37662   Accepted ...

  5. (Dijkstra) POJ2387 Til the Cows Come Home

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 81024   Accepted ...

  6. poj2387 Til the Cows Come Home 最短路径dijkstra算法

    Description Bessie is out in the field and wants to get back to the barn to get as much sleep as pos ...

  7. poj2387 Til the Cows Come Home

    解题思路:最短路的模板题,注意一个细节处理即可. 见代码: #include<cstdio> #include<cstring> #include<algorithm&g ...

  8. POJ2387 Til the Cows Come Home 【Dijkstra】

    题目链接:http://poj.org/problem?id=2387 题目大意; 题意:给出两个整数T,N,然后输入一些点直接的距离,求N和1之间的最短距离.. 思路:dijkstra求单源最短路, ...

  9. POJ-2387.Til the Cows Come Home.(五种方法:Dijkstra + Dijkstra堆优化 + Bellman-Ford + SPFA + Floyd-Warshall)

    昨天刚学习完最短路的算法,今天开始练题发现我是真的菜呀,居然能忘记邻接表是怎么写的,真的是菜的真实...... 为了弥补自己的菜,我决定这道题我就要用五种办法写出,并在Dijkstra算法堆优化中另外 ...

随机推荐

  1. Arduino I2C + 温湿度传感器HTS221

    主要特性 HTS221是意法半导体(STMicroelectronics)生产的小体积.数字式温湿度传感器IC.该IC目前在官网仍处在“评估”状态.其主要特性: 工作电压:1.7~3.6V 数据输出频 ...

  2. Centos 固定ip

    vim /etc/sysconfig/network-scripts/ifcfg-eth0 BOOTPROTO="static" ONBOOT=yes IPADDR=192.168 ...

  3. C# Log4.Net日志组件的应用系列(二)

    引言 Log4Net应该可以说是.NET中最流行的开源日志组件了.在各种项目框架中可以说是必不可少的组成部分.个人认为Log4Net有下面几个优点: 1. 使用灵活,它可以将日志分不同的等级,以不同的 ...

  4. Hibernate Update方法提交错误

    最近用通用Dao更新对象,报了以下错误 Row was updated or deleted by another transaction (or unsaved-value mapping was ...

  5. JAVA分解质因子

    /*题目 分解质因数(5分) 题目内容: 每个非素数(合数)都可以写成几个素数(也可称为质数)相乘的形式,这几个素数就都叫做这个合数的质因数.比如,6可以被分解为2x3,而24可以被分解为2x2x2x ...

  6. python基础,变量,if语句

     一.python初识 python是一门 解释型弱类型编程语言. 特点: 简单.明确.优雅 二.python的解释器 CPython. 官方提供的. 内部使用c语言来实现 PyPy. 一次性把我们的 ...

  7. [Objective-C语言教程]基本语法(4)

    前面已经看到了Objective-C程序的基本结构,因此很容易理解Objective-C编程语言的其他基本构建块. Objective-C令牌 Objective-C程序由各种令牌组成,令牌可以是关键 ...

  8. iOS 键盘的监听 调整view的位置

    iOS在处理键盘的出现和消失时需要监听UIKeyboardWillChangeFrameNotifications/UIKeyboardDidHideNotifications - (void)vie ...

  9. PL/SQL数据库开发那点事

    PL/SQL数据库开发那点事-->编程,存储程序 在SQL*plus 中编写PL/SQL程序,并在SQL*plus 中执行它, PL/SQL块的代码就存放在SQL*plus的缓冲区中.如果在SQ ...

  10. UITableView编辑模式

    UITableView有两种模式,普通模式和编辑模式.在编辑模式下可以对cell进行排序.删除.插入等等. 如何进入编辑模式 调用tableView的setEditing(editing: Bool, ...