阅读目录

一: collections模块

二: time,datetime模块

三: random模块

四: os模块

五: sys模块

六: json,pickle

七: re正则模块

八:re模块2

 九:uuid

十:importlib

collections模块

常用模块连接:http://www.cnblogs.com/Eva-J/articles/7228075.html#_labelTop

在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。

1.namedtuple: 生成可以使用名字来访问元素内容的tuple

2.deque: 双端队列,可以快速的从另外一侧追加和推出对象

3.Counter: 计数器,主要用来计数

4.OrderedDict: 有序字典

5.defaultdict: 带有默认值的字典

namedtuple

from collections import namedtuple
l1 = namedtuple('foo',['zhou','jun','hao']) #第一个参数随便起个名字
l2 = l1(520,123,1314)
print(l2.hao)#
print(l2.jun)#
print(l2.hao)#

类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

#namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])
yuan = Circle(1,2,3)
print(yuan.x) #
print(yuan.y) #
print(yuan.r) #

deque 双端队列,可以从两边增加删除值

使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

from collections import deque
new_list = deque([1,2,3,4,5,6,7]) #变成一个双端队列
new_list.appendleft('x') #往队列左边添加元素
new_list.append('y') #队列右边添加元素
print(new_list) #deque(['x', 1, 2, 3, 4, 5, 6, 7, 'y'])
ret = new_list.popleft() #从左边弹出一个值
print(ret) #x

OrderedDict  有序字典

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用OrderedDict

>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)]) #可以这样创建一个字典
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)]) #创建一个有序系字典
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])
from collections import OrderedDict
dic2 = {'a':1,'b':2}
dic = OrderedDict(dic2)
print(dic) #OrderedDict([('a', 1), ('b', 2)])

注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:

>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> od.keys() # 按照插入的Key的顺序返回
['z', 'y', 'x']

defaultdict  带有默认值的字典

有如下值集合 [11,22,33,44,55,66,77,88,99,90...],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中。

即: {'k1': 大于66 'k2': 小于66}
values = [11, 22, 33,44,55,66,77,88,99,90]

my_dict = {}

for value in  values:
if value>66:
if my_dict.has_key('k1'):
my_dict['k1'].append(value) #有就添加
else:
my_dict['k1'] = [value] #没有就创建一个
else:
if my_dict.has_key('k2'):
my_dict['k2'].append(value)
else:
my_dict['k2'] = [value] #原生字典解决方法

原生字典解决方法

from collections import defaultdict

values = [11, 22, 33,44,55,66,77,88,99,90]

my_dict = defaultdict(list)

for value in  values:
if value>66:
my_dict['k1'].append(value)
else:
my_dict['k2'].append(value) defaultdict字典解决方法

defaultdict字典解决方法

使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict

>>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A' 例2

Counter

Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。

from collections import Counter
c = Counter('AABSGSGBXXSCDSAAACD')
print(c) #Counter({'A': 5, 'S': 4, 'B': 2, 'G': 2, 'X': 2, 'C': 2, 'D': 2})
print(c['A']) #
其他详细内容 http://www.cnblogs.com/Eva-J/articles/7291842.html

time  时间模块

#常用方法
import time
1.time.sleep(secs)
(线程)推迟指定的时间运行。单位为秒。
2.time.time()
获取当前时间戳

表示时间的三种方式

在Python中,通常有这三种方式来表示时间:时间戳、元组(struct_time)、格式化的时间字符串:

(1)时间戳(timestamp) :通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。

(2)格式化的时间字符串(Format String): ‘1999-12-06’  time.strftime('%c')

%y 两位数的年份表示(00-99)
%Y 四位数的年份表示(000-9999)
%m 月份(01-12)
%d 月内中的一天(0-31)
%H 24小时制小时数(0-23)
%I 12小时制小时数(01-12)
%M 分钟数(00=59)
%S 秒(00-59)
%a 本地简化星期名称
%A 本地完整星期名称
%b 本地简化的月份名称
%B 本地完整的月份名称
%c 本地相应的日期表示和时间表示
%j 年内的一天(001-366)
%p 本地A.M.或P.M.的等价符
%U 一年中的星期数(00-53)星期天为星期的开始
%w 星期(0-6),星期天为星期的开始
%W 一年中的星期数(00-53)星期一为星期的开始
%x 本地相应的日期表示
%X 本地相应的时间表示
%Z 当前时区的名称
%% %号本身 python中时间日期格式化符号:

python中时间日期格式化符号:

(3)元组(struct_time) :struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天等)time.localtime()

索引(Index) 属性(Attribute) 值(Values)
0 tm_year(年) 比如2011
1 tm_mon(月) 1 - 12
2 tm_mday(日) 1 - 31
3 tm_hour(时) 0 - 23
4 tm_min(分) 0 - 59
5 tm_sec(秒) 0 - 61
6 tm_wday(weekday) 0 - 6(0表示周日)
7 tm_yday(一年中的第几天) 1 - 366
8 tm_isdst(是否是夏令时) 默认为-1

 首先,我们先导入time模块,来认识一下python中表示时间的几种格式:

#导入时间模块
>>>import time #时间戳
>>>time.time()
1500875844.800804 #时间字符串
>>>time.strftime("%Y-%m-%d %X")
'2017-07-24 13:54:37'
>>>time.strftime("%Y-%m-%d %H-%M-%S")
'2017-07-24 13-55-04' #时间元组:localtime将一个时间戳转换为当前时区的struct_time
time.localtime()
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24,
          tm_hour=13, tm_min=59, tm_sec=37,
tm_wday=0, tm_yday=205, tm_isdst=0)

小结:时间戳是计算机能够识别的时间;时间字符串是人能够看懂的时间;元组则是用来操作时间的

几种格式之间的转换

#时间戳-->结构化时间
#time.gmtime(时间戳) #UTC时间,与英国伦敦当地时间一致
#time.localtime(时间戳) #当地时间。例如我们现在在北京执行这个方法:与UTC时间相差8小时,UTC时间+8小时 = 北京时间
>>>time.gmtime(1500000000)
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=2, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0)
>>>time.localtime(1500000000)
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=10, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0) #结构化时间-->时间戳 
#time.mktime(结构化时间)
>>>time_tuple = time.localtime(1500000000)
>>>time.mktime(time_tuple)
1500000000.0

#结构化时间 --> %a %b %d %H:%M:%S %Y串
#time.asctime(结构化时间) 如果不传参数,直接返回当前时间的格式化串
>>>time.asctime(time.localtime(1500000000))
'Fri Jul 14 10:40:00 2017'
>>>time.asctime()
'Mon Jul 24 15:18:33 2017' #%a %d %d %H:%M:%S %Y串 --> 结构化时间
#time.ctime(时间戳) 如果不传参数,直接返回当前时间的格式化串
>>>time.ctime()
'Mon Jul 24 15:19:07 2017'
>>>time.ctime(1500000000)
'Fri Jul 14 10:40:00 2017'

计算时间差

import time
true_time=time.mktime(time.strptime('2017-09-11 08:30:00','%Y-%m-%d %H:%M:%S'))
time_now=time.mktime(time.strptime('2017-09-12 11:00:00','%Y-%m-%d %H:%M:%S'))
dif_time=time_now-true_time
struct_time=time.gmtime(dif_time)
print('过去了%d年%d月%d天%d小时%d分钟%d秒'%(struct_time.tm_year-1970,struct_time.tm_mon-1,
struct_time.tm_mday-1,struct_time.tm_hour,
struct_time.tm_min,struct_time.tm_sec)) 计算时间差

时间差

补充:

import time
#--------------------------我们先以当前时间为准,让大家快速认识三种形式的时间
print(time.time()) # 时间戳:1487130156.419527
print(time.strftime("%Y-%m-%d %X")) #格式化的时间字符串:'2017-02-15 11:40:53' print(time.localtime()) #本地时区的struct_time
print(time.gmtime()) #UTC时区的struct_time
#--------------------------按图1转换时间
# localtime([secs])
# 将一个时间戳转换为当前时区的struct_time。secs参数未提供,则以当前时间为准。
time.localtime()
time.localtime(1473525444.037215) # gmtime([secs]) 和localtime()方法类似,gmtime()方法是将一个时间戳转换为UTC时区(0时区)的struct_time。 # mktime(t) : 将一个struct_time转化为时间戳。
print(time.mktime(time.localtime()))#1473525749.0 # strftime(format[, t]) : 把一个代表时间的元组或者struct_time(如由time.localtime()和
# time.gmtime()返回)转化为格式化的时间字符串。如果t未指定,将传入time.localtime()。如果元组中任何一个
# 元素越界,ValueError的错误将会被抛出。
print(time.strftime("%Y-%m-%d %X", time.localtime()))#2016-09-11 00:49:56 # time.strptime(string[, format])
# 把一个格式化时间字符串转化为struct_time。实际上它和strftime()是逆操作。
print(time.strptime('2011-05-05 16:37:06', '%Y-%m-%d %X'))
#time.struct_time(tm_year=2011, tm_mon=5, tm_mday=5, tm_hour=16, tm_min=37, tm_sec=6,
# tm_wday=3, tm_yday=125, tm_isdst=-1)
#在这个函数中,format默认为:"%a %b %d %H:%M:%S %Y"。

  

#--------------------------按图2转换时间
# asctime([t]) : 把一个表示时间的元组或者struct_time表示为这种形式:'Sun Jun 20 23:21:05 1993'。
# 如果没有参数,将会将time.localtime()作为参数传入。
print(time.asctime())#Sun Sep 11 00:43:43 2016 # ctime([secs]) : 把一个时间戳(按秒计算的浮点数)转化为time.asctime()的形式。如果参数未给或者为
# None的时候,将会默认time.time()为参数。它的作用相当于time.asctime(time.localtime(secs))。
print(time.ctime()) # Sun Sep 11 00:46:38 2016
print(time.ctime(time.time())) # Sun Sep 11 00:46:38 2016

datetime模块

#时间加减
import datetime # print(datetime.datetime.now()) #返回 2016-08-19 12:47:03.941925
#print(datetime.date.fromtimestamp(time.time()) ) # 时间戳直接转成日期格式 2016-08-19
# print(datetime.datetime.now() )
# print(datetime.datetime.now() + datetime.timedelta(3)) #当前时间+3天
# print(datetime.datetime.now() + datetime.timedelta(-3)) #当前时间-3天
# print(datetime.datetime.now() + datetime.timedelta(hours=3)) #当前时间+3小时
# print(datetime.datetime.now() + datetime.timedelta(minutes=30)) #当前时间+30分 #
# c_time = datetime.datetime.now()
# print(c_time.replace(minute=3,hour=2)) #时间替换
>>> from datetime import datetime
>>> dt = datetime(2015, 4, 19, 12, 20) # 用指定日期时间创建datetime
>>> print(dt)
2015-04-19 12:20:00
>>> from datetime import datetime
>>> dt = datetime(2015, 4, 19, 12, 20) # 用指定日期时间创建datetime
>>> dt.timestamp() # 把datetime转换为timestamp
1429417200.0
>>> from datetime import datetime
>>> t = 1429417200.0
>>> print(datetime.fromtimestamp(t))
2015-04-19 12:20:00

  

  

random模块  随机模块

>>> import random
#随机小数
>>> random.random() # 大于0且小于1之间的小数
0.7664338663654585
>>> random.uniform(1,3) #大于1小于3的小数
1.6270147180533838 #随机整数
>>> random.randint(1,5) # 大于等于1且小于等于5之间的整数
>>> random.randrange(1,10,2) # 大于等于1且小于10之间的奇数 #随机选择一个返回
>>> random.choice([1,'',[4,5]]) # #1或者23或者[4,5]
#随机选择多个返回,返回的个数为函数的第二个参数
>>> random.sample([1,'',[4,5]],2) # #列表元素任意2个组合
[[4, 5], ''] #打乱列表顺序
>>> item=[1,3,5,7,9]
>>> random.shuffle(item) # 打乱次序
>>> item
[5, 1, 3, 7, 9]
>>> random.shuffle(item)
>>> item
[5, 9, 7, 1, 3]

随机生成数字大小写字母组合的验证码

import random

def func(n):
ret = ''
for i in range(n):
num = random.randint(0,9) #0到9随机生成一个整数
ALPHA = chr(random.randint(65,90)) #随机生成一个大写字母
alpha = chr(random.randint(97,122)) #随机生成一个小写字母
value = random.choice([str(num),ALPHA,alpha]) #注意,数字要转成字符串格式,choice参数传一个列表
ret += value
return ret print(func(8))
print(func(7))
print(func(6))

os模块

 os模块是与操作系统交互的一个接口

1.和文件夹相关的
2.和路径相关的
3.和文件相关的
4.和操作系统相关的
5.系统执行命令相关的
'''
os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径
os.chdir("dirname") 改变当前脚本工作目录;相当于shell下cd #绝对路径
os.curdir 返回当前目录: ('.')
os.pardir 获取当前目录的父目录字符串名:('..')
os.makedirs('dirname1/dirname2') 可生成多层递归目录
os.removedirs('dirname1') 若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推
os.mkdir('dirname') 生成单级目录;相当于shell中mkdir dirname
os.rmdir('dirname') 删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname
os.listdir('dirname') 列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印
os.remove() 删除一个文件
os.rename("oldname","newname") 重命名文件/目录
os.stat('path/filename') 获取文件/目录信息
os.sep 输出操作系统特定的路径分隔符,win下为"\\",Linux下为"/"
os.linesep 输出当前平台使用的行终止符,win下为"\t\n",Linux下为"\n"
os.pathsep 输出用于分割文件路径的字符串 win下为;,Linux下为:
os.name 输出字符串指示当前使用平台。win->'nt'; Linux->'posix'
os.system("bash command") 运行shell命令,直接显示
os.popen("bash command) 运行shell命令,获取执行结果
os.environ 获取系统环境变量 os.path
os.path.abspath(path) 返回path规范化的绝对路径 os.path.split(path) 将path分割成目录和文件名二元组返回 os.path.dirname(path)
             返回path的目录。其实就是os.path.split(path)的第一个元素 os.path.basename(path) 返回path最后的文件名。如何path以/或\结尾,那么就会返回空值。
即os.path.split(path)的第二个元素
os.path.exists(path) 如果path存在,返回True;如果path不存在,返回False
os.path.isabs(path) 如果path是绝对路径,返回True
os.path.isfile(path) 如果path是一个存在的文件,返回True。否则返回False
os.path.isdir(path) 如果path是一个存在的目录,则返回True。否则返回False
os.path.join(path1[, path2[, ...]]) 将多个路径组合后返回,第一个绝对路径之前的参数将被忽略
os.path.getatime(path) 返回path所指向的文件或者目录的最后访问时间
os.path.getmtime(path) 返回path所指向的文件或者目录的最后修改时间
os.path.getsize(path) 返回path的大小
os.path.abspath(path) #返回绝对路径

os.path.basename(path) #返回文件名

os.path.commonprefix(list) #返回list(多个路径)中,所有path共有的最长的路径。

os.path.dirname(path) #返回文件路径

os.path.exists(path)  #路径存在则返回True,路径损坏返回False

os.path.lexists  #路径存在则返回True,路径损坏也返回True

os.path.expanduser(path)  #把path中包含的"~"和"~user"转换成用户目录

os.path.expandvars(path)  #根据环境变量的值替换path中包含的”$name”和”${name}”

os.path.getatime(path)  #返回最后一次进入此path的时间。

os.path.getmtime(path)  #返回在此path下最后一次修改的时间。

os.path.getctime(path)  #返回path的大小

os.path.getsize(path)  #返回文件大小,如果文件不存在就返回错误

os.path.isabs(path)  #判断是否为绝对路径

os.path.isfile(path)  #判断路径是否为文件

os.path.isdir(path)  #判断路径是否为目录

os.path.islink(path)  #判断路径是否为链接

os.path.ismount(path)  #判断路径是否为挂载点()

os.path.join(path1[, path2[, ...]])  #把目录和文件名合成一个路径

os.path.normcase(path)  #转换path的大小写和斜杠

os.path.normpath(path)  #规范path字符串形式

os.path.realpath(path)  #返回path的真实路径

os.path.relpath(path[, start])  #从start开始计算相对路径

os.path.samefile(path1, path2)  #判断目录或文件是否相同

os.path.sameopenfile(fp1, fp2)  #判断fp1和fp2是否指向同一文件

os.path.samestat(stat1, stat2)  #判断stat tuple stat1和stat2是否指向同一个文件

os.path.split(path)  #把路径分割成dirname和basename,返回一个元组

os.path.splitdrive(path)   #一般用在windows下,返回驱动器名和路径组成的元组

os.path.splitext(path)  #分割路径,返回路径名和文件扩展名的元组

os.path.splitunc(path)  #把路径分割为加载点与文件

os.path.walk(path, visit, arg)  #遍历path,进入每个目录都调用visit函数,visit函数必须有

3个参数(arg, dirname, names),dirname表示当前目录的目录名,names代表当前目录下的所有

文件名,args则为walk的第三个参数

os.path.supports_unicode_filenames  #设置是否支持unicode路径名
'''

注意:os.stat('path/filename')  获取文件/目录信息 的结构说明

stat 结构:

st_mode: inode 保护模式
st_ino: inode 节点号。
st_dev: inode 驻留的设备。
st_nlink: inode 的链接数。
st_uid: 所有者的用户ID。
st_gid: 所有者的组ID。
st_size: 普通文件以字节为单位的大小;包含等待某些特殊文件的数据。
st_atime: 上次访问的时间。
st_mtime: 最后一次修改的时间。
st_ctime: 由操作系统报告的"ctime"。在某些系统上(如Unix)是最新的元数据更改的时间,在其它系统上(如Windows)是创建时间(详细信息参见平台的文档)。 stat 结构

stat 结构

sys模块 和python解释器交互

sys模块是与python解释器交互的一个接口

sys.argv           命令行参数List,第一个元素是程序本身路径
sys.exit(n) 退出程序,正常退出时exit(0),错误退出sys.exit(1)
sys.version 获取Python解释程序的版本信息
sys.path 返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
sys.platform 返回操作系统平台名称
import sys
try:
sys.exit(1)
except SystemExit as e:
print(e)

异常处理和status

import sys   #和解释器交互
if sys.argv[1] == 'alex' and sys.argv[2] == 'somebody':
print('登录成功')
else:
print('登录失败')
if sys.version.startswith(''):
'不支持'
sys.exit()

实例

序列化模块 json pickle shelve

什么叫序列化——将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化。

比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?
现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。
但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。
你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢?
没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串,
但是你要怎么把一个字符串转换成字典呢?
聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。
eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。
BUT!强大的函数有代价。安全性是其最大的缺点。
想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。
而使用eval就要担这个风险。
所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构) 为什么要有序列化模块

我为什么要有序列化模块

序列化的目的

1、以某种存储形式使自定义对象持久化
2、将对象从一个地方传递到另一个地方。
3、使程序更具维护性。
 

json

Json模块提供了四个功能:dumps、dump、loads、load

import json
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = json.dumps(dic) #序列化:将一个字典转换成一个字符串
print(type(str_dic),str_dic) #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"}
#注意,json转换完的字符串类型的字典中的字符串是由""表示的 dic2 = json.loads(str_dic) #反序列化:将一个字符串格式的字典转换成一个字典
#注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示
print(type(dic2),dic2) #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'} list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}]
str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型
print(type(str_dic),str_dic) #<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]
list_dic2 = json.loads(str_dic)
print(type(list_dic2),list_dic2) #<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}] loads和dumps

dumps和loads

import json
f = open('json_file','w')
dic = {'k1':'v1','k2':'v2','k3':'v3'}
json.dump(dic,f) #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件
f.close() f = open('json_file')
dic2 = json.load(f) #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回
f.close()
print(type(dic2),dic2) load和dump

dump,load

import json
f = open('file','w')
json.dump({'国籍':'中国'},f)
ret = json.dumps({'国籍':'中国'})
f.write(ret+'\n')
json.dump({'国籍':'美国'},f,ensure_ascii=False) #在写入的文件里能看到中文 不然是字节类型
ret = json.dumps({'国籍':'美国'},ensure_ascii=False)
f.write(ret+'\n')
f.close() ensure_ascii关键字参数

ensure_ascii关键字参数

pickle

#pickle   可以序列化一些自定义的数据类型  只能是python,其他语言不支持    游戏
#json 是所有编程语言通用的一种数据类型 列表,字典,数字 网络编程

json & pickle 模块

用于序列化的两个模块

 

  • json,用于字符串 和 python数据类型间进行转换
  • pickle,用于python特有的类型 和 python的数据类型间进行转换

 

pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load  (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化)


import pickle
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = pickle.dumps(dic)
print(str_dic) #一串二进制内容 dic2 = pickle.loads(str_dic)
print(dic2) #字典 import time
struct_time = time.localtime(1000000000)
print(struct_time)
f = open('pickle_file','wb')
pickle.dump(struct_time,f)
f.close() f = open('pickle_file','rb')
struct_time2 = pickle.load(f)
print(struct_time2.tm_year) pickle

pickle


如果你序列化的内容是列表或者字典,我们非常推荐你使用json模块
但如果出于某种原因你不得不序列化其他的数据类型,而未来你还会用python对这个数据进行反序列化的话,那么就可以使用pickle



shelve

shelve也是python提供给我们的序列化工具,比pickle用起来更简单一些。
shelve只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。

import shelve
f = shelve.open('shelve_file')
f['key'] = {'int':10, 'float':9.5, 'string':'Sample data'} #直接对文件句柄操作,就可以存入数据
f.close() import shelve
f1 = shelve.open('shelve_file')
existing = f1['key'] #取出数据的时候也只需要直接用key获取即可,但是如果key不存在会报错
f1.close()
print(existing) shelve

shelve

这个模块有个限制,它不支持多个应用同一时间往同一个DB进行写操作。所以当我们知道我们的应用如果只进行读操作,我们可以让shelve通过只读方式打开DB


import shelve
f = shelve.open('shelve_file', flag='r')
existing = f['key']
f.close()
print(existing)

只读


由于shelve在默认情况下是不会记录待持久化对象的任何修改的,所以我们在shelve.open()时候需要修改默认参数,否则对象的修改不会保存。


import shelve
f1 = shelve.open('shelve_file')
print(f1['key'])
f1['key']['new_value'] = 'this was not here before'
f1.close() f2 = shelve.open('shelve_file', writeback=True)
print(f2['key'])
f2['key']['new_value'] = 'this was not here before'
f2.close() 设置writeback

writeback方式有优点也有缺点。优点是减少了我们出错的概率,并且让对象的持久化对用户更加的透明了;但这种方式并不是所有的情况下都需要,首先,使用writeback以后,
shelf在open()的时候会增加额外的内存消耗,并且当DB在close()的时候会将缓存中的每一个对象都写入到DB,这也会带来额外的等待时间。因为shelve没有办法知道缓存中哪些对象修改了,
哪些对象没有修改,因此所有的对象都会被写入。

uuid  生成随机字符串,唯一标识

import uuid

print(str(uuid.uuid4()))
# 9b0d52cb-f2e7-4949-975f-7f8546db22b7

  

import importlib

importlib.import_module()

Python一些常用模块的更多相关文章

  1. python的常用模块之collections模块

    python的常用模块之collections模块 python全栈开发,模块,collections 认识模块 什么是模块?    常见的场景:一个模块就是一个包含了python定义和声明的文件,文 ...

  2. python之常用模块

    python 常用模块 之 (subprocess模块.logging模块.re模块) python 常用模块 之 (序列化模块.XML模块.configparse模块.hashlib模块) pyth ...

  3. python之常用模块二(hashlib logging configparser)

    摘要:hashlib ***** logging ***** configparser * 一.hashlib模块 Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等. 摘要算法 ...

  4. Python学习——python的常用模块

    模块:用一堆代码实现了某个功能的代码集合,模块是不带 .py 扩展的另外一个 Python 文件的文件名. 一.time & datetime模块 import time import dat ...

  5. python 之常用模块

    一 认识模块 二 常用模块    (1)re模块    (2)collections模块 一  认识模块     (1)什么是模块      (2)模块的导入和使用 (1)模块是:一个模块就是一个包含 ...

  6. Python之常用模块--collections模块

    认识模块 什么是模块? 常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀. 但其实import加载的模块分为四个通用类别: 1 使用python编写的 ...

  7. Python自动化开发之python的常用模块

    python常用模块 模块的种类:模块分为三种,分别是自定义模块:内置标准模块(即标准库):开源模块(第三方). 以下主要研究标准模块即标准库:标准库直接导入即可,不需要安装. 时间模块:time , ...

  8. python基础----常用模块

    一 time模块(时间模块)★★★★                                                      时间表现形式 在Python中,通常有这三种方式来表示时 ...

  9. python(五)常用模块学习

    版权声明:本文为原创文章,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明. https://blog.csdn.net/fgf00/article/details/52357 ...

  10. python学习——常用模块

    在学习常用模块时我们应该知道模块和包是什么,关于模块和包会单独写一篇随笔,下面先来了解有关在python中的几个常用模块. 一.什么是模块 常见的场景:一个模块就是一个包含了python定义和声明的文 ...

随机推荐

  1. The Definitive Guide To Django 2 学习笔记(四) 动态URLs

    前面的例子中,虽然时间是动态可变的,但它的URL却是静态的(/time/).很多时候,URL也是需要动态改变,然后展示出不通的内容来.现在我们就来创建一个可以动态改变URL的例子. 如果URLconf ...

  2. What is Web Application Architecture? How It Works, Trends, Best Practices and More

    At Stackify, we understand the amount of effort that goes into creating great applications. That’s w ...

  3. 用Vue.js开发一个电影App的前端界面

    我们要构建一个什么样的App? 我们大多数人使用在线流媒体服务(如Netflix)观看我们最喜欢的电影或者节目.这篇文章将重点介绍如何通过使用vue.js 2 建立一个类似风格的电影流媒体WEB交互界 ...

  4. website 合集

    1. oracle  http://asktom.oracle.com ( 英文 ) http://itpub.net ( 中文 ) https://www.oracle.com/communitie ...

  5. 用Eclipse的tomcat插件启动tomcat时报错:

    用Eclipse的tomcat插件启动tomcat时报错: FATAL ERROR in native method: JDWP No transports initialized, jvmtiErr ...

  6. js json ie不支持json

    JSON是包含在JScript 5.8中,而为了向下兼容ie8只有在文档模式是”Internet Explorer 8 Standards”的时候才使用JScripte 5.8,其他时候使用JScri ...

  7. flask渲染模板

    Flask自身使用了jinja2模板,可以使用render_template()方法来渲染模板,只需要将模板名和关键字的参数传入. 该渲染模板的模块(views.py)会在 templates 文件夹 ...

  8. 4、手把手教React Native实战之flexbox布局(伸缩属性)

    ###伸缩项目的属性 1.order 定义项目的排列顺序,数值越小,排列越靠前,默认值为0,语法为:order:整数值 2.flex-grow 定义伸缩项目的放大比例,默认值为0,即表示如果存在剩余空 ...

  9. DICOM:docker实现DICOM服务虚拟化

    背景: docker,是一个开源的应用容器引擎,眼下大多应用在部署和运维领域,然而因为全然使用沙箱机制,相互之间能够看做独立的主机,且自身对资源的需求也十分有限.远远低于虚拟机.甚至非常多时候.能够直 ...

  10. 简单的php基于curl的反向代理程序

    起因: 经理:需要实现一个反向代理? 我:  简单,nginx分分钟配置好. 经理:嗯?没有nginx? 我: nodejs也行啊,网上有例子分分钟搞定. 经理:嗯?只有虚拟主机,只能上传php程序? ...