BZOJ 1296 粉刷匠(分组背包套DP)
刚开始往网络流的方向想。建不出图。。。
因为每次只能对一行进行染色。每一行都是独立的。
对于每一行,因为格子只能染一次,所以可以发现这是一个多阶段决策问题,这个决策就是当前格子染0还是染1.
令dp[i][j][k](k==0||k==1)表示当前行第i个格子用了j次染色,且这次染色染为k色 的最多有效格子。
这样我们用了O(n*m*m)得出了每一行用了v次染色获得的最多有效格子val。
显然的分组背包。每一个组最多选一种。再用O(V*n*m)求一遍分组背包即可。
总复杂度O((V+m)*m*n).
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi 3.1415926535
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... int val[][], dp[][][], ans[];
char s[][]; int main ()
{
int n, m, T;
scanf("%d%d%d",&n,&m,&T);
FOR(i,,n) scanf("%s",s[i]+);
FOR(i,,n) {
mem(dp,);
FOR(j,,m) FOR(k,,j) {
dp[j][k][]=max(dp[j-][k][],max(dp[j-][k-][],dp[j-][k-][]))+(s[i][j]=='');
dp[j][k][]=max(dp[j-][k][],max(dp[j-][k-][],dp[j-][k-][]))+(s[i][j]=='');
}
FOR(j,,m) val[i][j]=max(dp[m][j][],dp[m][j][]);
}
FOR(i,,n) for (int j=T; j>=; --j) for (int k=min(j,m); k>=; --k)
ans[j]=max(ans[j],ans[j-k]+val[i][k]);
printf("%d\n",ans[T]);
return ;
}
BZOJ 1296 粉刷匠(分组背包套DP)的更多相关文章
- BZOJ 1296 粉刷匠
Description windy有\(N\)条木板需要被粉刷.每条木板被分为\(M\)个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. ...
- Codevs 1744 格子染色==BZOJ 1296 粉刷匠
1744 格子染色 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 有 n 条木板需要被粉 ...
- BZOJ 1296: [SCOI2009]粉刷匠 分组DP
1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...
- 2014.7.8模拟赛【笨笨当粉刷匠】|bzoj1296 [SCOI]粉刷匠
笨笨太好玩了,农田荒芜了,彩奖用光了,笨笨只好到处找工作,笨笨找到了一份粉刷匠的工作.笨笨有n条木板需要被粉刷.每条木板被分成m个格子,每个格子要被刷成红色或蓝色.笨笨每次粉刷,只能选择一条木板上一段 ...
- BZOJ 1296: [SCOI2009]粉刷匠( dp )
dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] ) ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...
- [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2184 Solved: 1259[Submit][Statu ...
- 1296: [SCOI2009]粉刷匠[多重dp]
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1919 Solved: 1099[Submit][Statu ...
- BZOJ 1296(SCOI 2009) 粉刷匠
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2544 Solved: 1466 [Submit][Statu ...
- 【BZOJ1296】[SCOI2009]粉刷匠 (DP+背包)
[SCOI2009]粉刷匠 题目描述 \(windy\)有 \(N\) 条木板需要被粉刷. 每条木板被分为 \(M\) 个格子. 每个格子要被刷成红色或蓝色. \(windy\)每次粉刷,只能选择一条 ...
随机推荐
- SQL条件判断中字符串后面有空格的问题
也不知何时才有的概念,还是以前一直没有注意,从哪也没有听说过的定义,今天又遇见了一个小坑,特记录下来,防止再陷坑! 才疏学浅,文笔有限,简单点说吧,就是在写SQL Server语句时,以前使用了 WH ...
- 优步UBER司机全国各地奖励政策汇总 (2月8日-2月14日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- ORB-SLAM(十二)优化
ORB-SLAM中优化使用g2o库,先复习一下g2o的用法,上类图 其中SparseOptimizer就是我们需要维护的优化求解器,他是一个优化图,也是一个超图(包含若干顶点和一元二元多元边),怎样定 ...
- springboot整合kafka应用
1.kafka在消息传递的使用非常普遍,相对于activemq来说kafka的分布式管理和使用更加灵活. 2.activemq的搭建和使用可以参考: activemq搭建和springmvc的整合:h ...
- hdu2149Public Sale(巴什博弈)
Public Sale Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- sql注入--高权限,load_file读写文件
select '<?php eval($_POST[123]) ?>' into outfile '/var/www/html/1.php'; 1.MYSQL新特性限制文件写入及替代方法 ...
- Java 语法基础
一 关键字 关键字: 其实就是某种语言赋予了特殊含义的单词 保留字: 其实就是还没有赋予特殊含义 但是准备日后要使用过的单词 二 标示符 标示符: 其实就是在程序中自定义的名词 比如类名, 变量名, ...
- 【WXS数据类型】Boolean
属性: 名称 值类型 说明 [Boolean].constructor [String] 返回值为“Boolean”,表示类型的结构字符串 方法: 原型:[Boolean].toString() 说明 ...
- 参数为json格式的接口
1.参数为json格式,需要添加一个header信息web_add_header("Content-type", "application/json"); 2. ...
- 【转】cocos2d-x如何优化内存的应用
原地址:http://cblog.chinadaily.com.cn/blog-942327-4327173.html 注:自身以前也写过cocos2d-x如何优化内存的应用,以及内存不够的情况下怎么 ...