[CF622F]The Sum of the k-th Powers
题目大意:给你$n,k(n\leqslant10^9,k\leqslant10^6)$,求:
$$
\sum\limits_{i=1}^ni^k\pmod{10^9+7}
$$
题解:可以猜测是一个$k+1$次的多项式,可以求出$x$在$0,1,2,3,\dots,k+1$时的值,设为$s_0,s_1,\dots,s_{k+1}$,根据拉格朗日插值公式:
$$
\begin{align*}
f_n&=\sum\limits_{i=0}^{k+1}y_i\prod\limits_{j=0,j\not=i}^{k+1}\dfrac{n-x_j}{x_i-x_j}\\
&=\sum\limits_{i=0}^{k+1}(-1)^{k-i+1}s_i\dfrac{n(n-1)\cdots(n-k-1)}{(n-i)i!(k-i+1)!}\\
\end{align*}
$$
然后预处理出阶乘就可以了。注意,因为取了$0$这个点,若$k=0$会答案出错,可以选择特判或取$1\sim k+2$几个点,还有,当$k\leqslant n-1$时,式子为零,直接输出即可。
卡点:无
C++ Code:
#include <cstdio>
#define maxn 1000010
const int mod = 1e9 + 7;
inline int pw(int base, int p) {
static int res;
for (res = 1; p; p >>= 1, base = static_cast<long long> (base) * base % mod) if (p & 1) res = static_cast<long long> (res) * base % mod;
return res;
}
inline int inv(int x) {return pw(x, mod - 2);}
inline void reduce(int &x) {x += x >> 31 & mod;} int n, k, ans;
int fac[maxn], s[maxn], prod = 1;
int main() {
scanf("%d%d", &n, &k);
if (k == 0) {
std::printf("%d\n", n);
return 0;
}
for (int i = 0; i <= k + 1; i++) {
prod = static_cast<long long> (n - i) * prod % mod;
s[i] = pw(i, k);
}
fac[0] = 1;
for (int i = 1; i <= k + 1; i++) {
fac[i] = static_cast<long long> (fac[i - 1]) * i % mod;
reduce(s[i] += s[i - 1] - mod);
if (n == i) {
std::printf("%d\n", s[i]);
return 0;
}
}
for (int i = 1; i <= k + 1; i++) {
reduce(ans += s[i] * static_cast<long long> (prod) % mod * inv(n - i) % mod * inv(fac[i]) % mod * inv(fac[k - i + 1]) * (k - i + 1 & 1 ? -1 : 1) % mod - mod);
reduce(ans);
}
printf("%d\n", ans);
return 0;
}
[CF622F]The Sum of the k-th Powers的更多相关文章
- [题解] CF622F The Sum of the k-th Powers
CF622F The Sum of the k-th Powers 题意:给\(n\)和\(k\),让你求\(\sum\limits_{i = 1} ^ n i^k \ mod \ 10^9 + 7\ ...
- 解题:CF622F The Sum of the k-th Powers
题面 TJOI2018出CF原题弱化版是不是有点太过分了?对,就是 TJOI2018 教科书般的亵渎 然而我这个问题只会那个题的范围的m^3做法 回忆一下1到n求和是二次的,平方求和公式是三次的,立方 ...
- [Swift]LeetCode862. 和至少为 K 的最短子数组 | Shortest Subarray with Sum at Least K
Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...
- LeetCode862. Shortest Subarray with Sum at Least K
Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...
- leetcode 862 shorest subarray with sum at least K
https://leetcode.com/problems/shortest-subarray-with-sum-at-least-k/ 首先回顾一下求max子数组的值的方法是:记录一个前缀min值, ...
- 862. Shortest Subarray with Sum at Least K
Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...
- [LeetCode] 862. Shortest Subarray with Sum at Least K 和至少为K的最短子数组
Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...
- 【LeetCode】1099. Two Sum Less Than K 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力求解 日期 题目地址:https://leetco ...
- 【LeetCode】862. Shortest Subarray with Sum at Least K 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 队列 日期 题目地址:https://leetcod ...
随机推荐
- CakePHP 总结
1. 处理任何保存或获取数据的操作最好都写在模型(Model)中.这个概念通常被称为fat model. 2. 返回上一条插入记录的ID, $this->Example->getInser ...
- 说说CakePHP的关联模型之一 基本关联
一个无论多么复杂的程序,拆开看无非是三种逻辑结构的组合:顺序结构.条件结构和循环结构. 类似的,数据库中表与表的之间的关联无外乎四种:一对一.一对多.多对一和多对多. CakePHP的模型层中定义了四 ...
- 「日常训练&知识学习」单调栈
这几天的知识学习比较多,因为时间不够了.加油吧,为了梦想. 这里写几条简单的单调栈作为题解记录,因为单调栈的用法很简单,可是想到并转化成用这个需要一些题目的积淀. 相关博客参见:https://blo ...
- 「日常训练」Brackets in Implications(Codeforces Round 306 Div.2 E)
题意与分析 稍微复杂一些的思维题.反正这场全是思维题,就一道暴力水题(B).题解直接去看官方的,很详尽. 代码 #include <bits/stdc++.h> #define MP ma ...
- mysql5.6 无法远程连接问题解决
需要配置mysql5.6版本的my.cnf文件,我的my.cnf文件配置如下: port=3306是我后来自己加上的.加上这个之后重启mysql service mysqld restart 记得给r ...
- 在nginx环境下,直接用域名访问(首页)
①: server { listen 80; server_name www.njm1.com; location = / { #=/规则可以直接访问域名.如:www.njm1.com.跳转到http ...
- fizzbuzz Python很有意思的解法
写一个程序,打印数字1到100,3的倍数打印“Fizz”来替换这个数,5的倍数打印“Buzz”,对于既是3的倍数又是5的倍数的数字打印“FizzBuzz” 题目不难,解起来容易,用for循环做if,e ...
- 解析Java中final关键字的各种用法
首先,我们可以从字面上理解一下final这个英文单词的中文含义:“最后的,最终的; 决定性的; 不可更改的:”.显然,final关键词如果用中文来解释,“不可更改的”更为合适.当你在编写程序,可能会遇 ...
- 文件上传:CommonsMultipartResolver
一. 简介 CommonsMultipartResolver是基于Apache的Commons FileUpload来实现文件上传功能的,主要作用是配置文件上传的一些属性. 二. 配置 1)依赖Apa ...
- 【Linux 运维】 安装PHP工具Composer
一.安装PHP 由于Composer是 PHP 用来管理依赖(dependency)关系的工具.你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的 ...