洛谷 P3332 [ZJOI2013]K大数查询 解题报告
P3332 [ZJOI2013]K大数查询
题目描述
有\(N\)个位置,\(M\)个操作。操作有两种,每次操作如果是\(\tt{1\ a\ b\ c}\)的形式表示在第\(a\)个位置到第\(b\)个位置,每个位置加入一个数\(c\)如果是\(\tt{2\ a\ b\ c}\)形式,表示询问从第\(a\)个位置到第\(b\)个位置,第\(C\)大的数是多少。
输入输出格式
输入格式:
第一行\(N\),\(M\)接下来\(M\)行,每行形如\(\tt{1\ a\ b\ c}\)或\(\tt{2\ a\ b\ c}\)
输出格式:
输出每个询问的结果
说明
\(N,M\le 50000\)
\(a\le b\le N\)
\(1\)操作中\(abs(c)\le N\)
\(2\)操作中\(c\le long long\)
把整体二分的树状数组改成线段树区间操作即可
Code:
#include <cstdio>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
const int N=1e5+10;
struct node{int op,l,r;ll c;}q[N],ql[N],qr[N];
int ans[N],n,m,Q;
ll sum[N<<1],tag[N<<1];
#define ls id<<1
#define rs id<<1|1
void pushdown(int id,int L,int R)
{
if(tag[id])
{
int Mid=L+R>>1;
sum[ls]+=tag[id]*(Mid+1-L),sum[rs]+=tag[id]*(R-Mid);
tag[ls]+=tag[id],tag[rs]+=tag[id];
tag[id]=0;
}
}
void change(int id,int L,int R,int l,int r,ll d)
{
if(L==l&&R==r)
{
tag[id]+=d,sum[id]+=1ll*(R+1-L)*d;
return;
}
pushdown(id,L,R);
int Mid=L+R>>1;
if(r<=Mid) change(ls,L,Mid,l,r,d);
else if(l>Mid) change(rs,Mid+1,R,l,r,d);
else change(ls,L,Mid,l,Mid,d),change(rs,Mid+1,R,Mid+1,r,d);
sum[id]=sum[ls]+sum[rs];
}
ll query(int id,int L,int R,int l,int r)
{
if(L==l&&R==r)return sum[id];
pushdown(id,L,R);
int Mid=L+R>>1;
if(r<=Mid) return query(ls,L,Mid,l,r);
else if(l>Mid) return query(rs,Mid+1,R,l,r);
else return query(ls,L,Mid,l,Mid)+query(rs,Mid+1,R,Mid+1,r);
}
void divide(int l,int r,int s,int t)
{
if(s>t) return;
if(l==r) {rep(i,s,t)ans[q[i].op]=l;return;}
int mid=l+r>>1,lp=0,rp=0;
rep(i,s,t)
{
if(q[i].op)
{
ll c=query(1,1,n,q[i].l,q[i].r);
if(c>=q[i].c) qr[++rp]=q[i];
else ql[++lp]=q[i],ql[lp].c-=c;
}
else
{
if(q[i].c>mid) change(1,1,n,q[i].l,q[i].r,1),qr[++rp]=q[i];
else ql[++lp]=q[i];
}
}
rep(i,s,t)if(!q[i].op&&q[i].c>mid) change(1,1,n,q[i].l,q[i].r,-1);
rep(i,s,s+lp-1) q[i]=ql[i+1-s];
rep(i,s+lp,t) q[i]=qr[i+1-s-lp];
divide(l,mid,s,s+lp-1),divide(mid+1,r,s+lp,t);
}
int main()
{
scanf("%d%d",&n,&m);
rep(i,1,m)
{
scanf("%d%d%d%lld",&q[i].op,&q[i].l,&q[i].r,&q[i].c),--q[i].op;
if(q[i].op) q[i].op=++Q;
}
divide(-n,n,1,m);
rep(i,1,Q) printf("%d\n",ans[i]);
return 0;
}
2018.11.1
洛谷 P3332 [ZJOI2013]K大数查询 解题报告的更多相关文章
- 洛谷 P3332 [ZJOI2013]K大数查询 (整体二分理解)
链接: P3332 题意: 维护 \(n(1\leq n\leq 5\times10^4)\) 个可重整数集,编号从 \(1\) 到 \(n\).有 \(m(1\leq m\leq5\times10^ ...
- [洛谷P3332][ZJOI2013]K大数查询
题目大意:有$n$个位置,$m$个操作.操作有两种: $1\;l\;r\;x:$在区间$[l,r]$每个位置加上一个数$x$ $2\;l\;r\;k:$询问$[l,r]$中第$k$大的数是多少. 题解 ...
- 洛谷P3332 [ZJOI2013]K大数查询 权值线段树套区间线段树_标记永久化
Code: #include <cstdio> #include <algorithm> #include <string> #include <cstrin ...
- 洛谷 P3332 [ZJOI2013]K大数查询 || bzoj3110
用树套树就很麻烦,用整体二分就成了裸题.... 错误: 1.尝试线段树套平衡树,码农,而且n*log^3(n)慢慢卡反正我觉得卡不过去 2.线段树pushdown写错...加法tag对于区间和的更新应 ...
- P3332 [ZJOI2013]K大数查询(线段树套线段树+标记永久化)
P3332 [ZJOI2013]K大数查询 权值线段树套区间线段树 把插入的值离散化一下开个线段树 蓝后每个节点开个线段树,维护一下每个数出现的区间和次数 为了防止MLE动态开点就好辣 重点是标记永久 ...
- P3332 [ZJOI2013]K大数查询
传送门 注意操作 $1$ 是在区间的每个位置加入一个数,不是加上一个值 相当于每个位置维护的是一个集合 显然树套树 一开始想的是区间线段树套权值线段树 发现这样询问区间第 $K$ 大时就要先二分答案再 ...
- P3332 [ZJOI2013]K大数查询 整体二分
终于入门整体二分了,勉勉强强算是搞懂了一个题目吧. 整体二分很多时候可以比较好的离线处理区间\(K\)大值的相关问题.考虑算法流程: 操作队列\(arr\),其中有询问和修改两类操作. 每次在答案的可 ...
- 洛谷 P1993 小K的农场 解题报告
P1993 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...
- 【BZOJ3110】【LG3332】[ZJOI2013]K大数查询
[BZOJ3110][LG3332][ZJOI2013]K大数查询 题面 洛谷 BZOJ 题解 和普通的整体分治差不多 用线段树维护一下每个查询区间内大于每次二分的值\(mid\)的值即可 然后再按套 ...
随机推荐
- c的多态
使用函数数组,实现多态 参考my_strtoll10
- 后续博客转移到zhylj.cc
此博客暂不更新了 zhylj.cc
- Windows运行机理——主程序—WinMain
Windows运行机理这系列文章都是来至于<零基础学Qt4编程>——吴迪,个人觉得写得很好,所以进行了搬运和个人加工 在windows 操作系统下,用C 或者C++来编写MS-DOS 应用 ...
- Linux命令应用大词典-第26章 模块和内核管理
26.1 lsmod:显示内核中模块的状态 26.2 get_module:查看内核模块详细信息 26.3 modinfo:显示内核模块信息
- 初学Direct X(5)
初学Direct X(5) 前面学习了使用表面绘制屏幕,但这种方法与另一种比较起来,有着绘图速度颇慢以及缺乏对任何透明类型的支持,这就是前面的篮框以及炸弹会有黑色背景的原因,这种方法就是纹理.他可以绘 ...
- SpriteKit在复制节点时留了一个巨坑给开发者,需要开发者手动把复制节点的isPaused设置为false
根据When an overlay node with actions is copied there is currently a SpriteKit bug where the node’s is ...
- C++clock()延时循环
函数clock(),返回程序开始执行后所用的系统时间,但是有两个复制问题. 1.clock()返回时间的单位不一定是秒 2.该函数的返回类型在某些系统上可能是Long,也可能是unsigned lon ...
- 小米 OJ 编程比赛 02 月常规赛
Carryon 数数字 描述 Carryon 最近迷上了数数字,然后 Starry 给了他一个区间[l,r] ,然后提了几个要求, 需要将 ll 到 rr 之间的数全部转化成 16 进制,然后连起来. ...
- 2.hadoop基本配置,本地模式,伪分布式搭建
2. Hadoop三种集群方式 1. 三种集群方式 本地模式 hdfs dfs -ls / 不需要启动任何进程 伪分布式 所有进程跑在一个机器上 完全分布式 每个机器运行不同的进程 2. 服务器基本配 ...
- canvas学习(四):高级属性
一:阴影 示例:绘制一个带有阴影的正方形 var canvas = document.getElementById("myCanvas") var ctx = canvas.get ...