洛谷 P3332 [ZJOI2013]K大数查询 解题报告
P3332 [ZJOI2013]K大数查询
题目描述
有\(N\)个位置,\(M\)个操作。操作有两种,每次操作如果是\(\tt{1\ a\ b\ c}\)的形式表示在第\(a\)个位置到第\(b\)个位置,每个位置加入一个数\(c\)如果是\(\tt{2\ a\ b\ c}\)形式,表示询问从第\(a\)个位置到第\(b\)个位置,第\(C\)大的数是多少。
输入输出格式
输入格式:
第一行\(N\),\(M\)接下来\(M\)行,每行形如\(\tt{1\ a\ b\ c}\)或\(\tt{2\ a\ b\ c}\)
输出格式:
输出每个询问的结果
说明
\(N,M\le 50000\)
\(a\le b\le N\)
\(1\)操作中\(abs(c)\le N\)
\(2\)操作中\(c\le long long\)
把整体二分的树状数组改成线段树区间操作即可
Code:
#include <cstdio>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
const int N=1e5+10;
struct node{int op,l,r;ll c;}q[N],ql[N],qr[N];
int ans[N],n,m,Q;
ll sum[N<<1],tag[N<<1];
#define ls id<<1
#define rs id<<1|1
void pushdown(int id,int L,int R)
{
if(tag[id])
{
int Mid=L+R>>1;
sum[ls]+=tag[id]*(Mid+1-L),sum[rs]+=tag[id]*(R-Mid);
tag[ls]+=tag[id],tag[rs]+=tag[id];
tag[id]=0;
}
}
void change(int id,int L,int R,int l,int r,ll d)
{
if(L==l&&R==r)
{
tag[id]+=d,sum[id]+=1ll*(R+1-L)*d;
return;
}
pushdown(id,L,R);
int Mid=L+R>>1;
if(r<=Mid) change(ls,L,Mid,l,r,d);
else if(l>Mid) change(rs,Mid+1,R,l,r,d);
else change(ls,L,Mid,l,Mid,d),change(rs,Mid+1,R,Mid+1,r,d);
sum[id]=sum[ls]+sum[rs];
}
ll query(int id,int L,int R,int l,int r)
{
if(L==l&&R==r)return sum[id];
pushdown(id,L,R);
int Mid=L+R>>1;
if(r<=Mid) return query(ls,L,Mid,l,r);
else if(l>Mid) return query(rs,Mid+1,R,l,r);
else return query(ls,L,Mid,l,Mid)+query(rs,Mid+1,R,Mid+1,r);
}
void divide(int l,int r,int s,int t)
{
if(s>t) return;
if(l==r) {rep(i,s,t)ans[q[i].op]=l;return;}
int mid=l+r>>1,lp=0,rp=0;
rep(i,s,t)
{
if(q[i].op)
{
ll c=query(1,1,n,q[i].l,q[i].r);
if(c>=q[i].c) qr[++rp]=q[i];
else ql[++lp]=q[i],ql[lp].c-=c;
}
else
{
if(q[i].c>mid) change(1,1,n,q[i].l,q[i].r,1),qr[++rp]=q[i];
else ql[++lp]=q[i];
}
}
rep(i,s,t)if(!q[i].op&&q[i].c>mid) change(1,1,n,q[i].l,q[i].r,-1);
rep(i,s,s+lp-1) q[i]=ql[i+1-s];
rep(i,s+lp,t) q[i]=qr[i+1-s-lp];
divide(l,mid,s,s+lp-1),divide(mid+1,r,s+lp,t);
}
int main()
{
scanf("%d%d",&n,&m);
rep(i,1,m)
{
scanf("%d%d%d%lld",&q[i].op,&q[i].l,&q[i].r,&q[i].c),--q[i].op;
if(q[i].op) q[i].op=++Q;
}
divide(-n,n,1,m);
rep(i,1,Q) printf("%d\n",ans[i]);
return 0;
}
2018.11.1
洛谷 P3332 [ZJOI2013]K大数查询 解题报告的更多相关文章
- 洛谷 P3332 [ZJOI2013]K大数查询 (整体二分理解)
链接: P3332 题意: 维护 \(n(1\leq n\leq 5\times10^4)\) 个可重整数集,编号从 \(1\) 到 \(n\).有 \(m(1\leq m\leq5\times10^ ...
- [洛谷P3332][ZJOI2013]K大数查询
题目大意:有$n$个位置,$m$个操作.操作有两种: $1\;l\;r\;x:$在区间$[l,r]$每个位置加上一个数$x$ $2\;l\;r\;k:$询问$[l,r]$中第$k$大的数是多少. 题解 ...
- 洛谷P3332 [ZJOI2013]K大数查询 权值线段树套区间线段树_标记永久化
Code: #include <cstdio> #include <algorithm> #include <string> #include <cstrin ...
- 洛谷 P3332 [ZJOI2013]K大数查询 || bzoj3110
用树套树就很麻烦,用整体二分就成了裸题.... 错误: 1.尝试线段树套平衡树,码农,而且n*log^3(n)慢慢卡反正我觉得卡不过去 2.线段树pushdown写错...加法tag对于区间和的更新应 ...
- P3332 [ZJOI2013]K大数查询(线段树套线段树+标记永久化)
P3332 [ZJOI2013]K大数查询 权值线段树套区间线段树 把插入的值离散化一下开个线段树 蓝后每个节点开个线段树,维护一下每个数出现的区间和次数 为了防止MLE动态开点就好辣 重点是标记永久 ...
- P3332 [ZJOI2013]K大数查询
传送门 注意操作 $1$ 是在区间的每个位置加入一个数,不是加上一个值 相当于每个位置维护的是一个集合 显然树套树 一开始想的是区间线段树套权值线段树 发现这样询问区间第 $K$ 大时就要先二分答案再 ...
- P3332 [ZJOI2013]K大数查询 整体二分
终于入门整体二分了,勉勉强强算是搞懂了一个题目吧. 整体二分很多时候可以比较好的离线处理区间\(K\)大值的相关问题.考虑算法流程: 操作队列\(arr\),其中有询问和修改两类操作. 每次在答案的可 ...
- 洛谷 P1993 小K的农场 解题报告
P1993 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...
- 【BZOJ3110】【LG3332】[ZJOI2013]K大数查询
[BZOJ3110][LG3332][ZJOI2013]K大数查询 题面 洛谷 BZOJ 题解 和普通的整体分治差不多 用线段树维护一下每个查询区间内大于每次二分的值\(mid\)的值即可 然后再按套 ...
随机推荐
- android 学习六 构建用户界面和使用控件
1.常用Android控件最终都会继承自View类 2.ViewGroup是一些布局类列表的基类,包括View和ViewGroup 3.构造界面的三种方法 a.完全使用代码(太灵活,而不好维护) ...
- 吴裕雄 python 机器学习——混合高斯聚类GMM模型
import numpy as np import matplotlib.pyplot as plt from sklearn import mixture from sklearn.metrics ...
- java 二叉树的创建 遍历
本来说复习一下BFS和DFS,辗转就来到了二叉树...本文包括二叉树的创建和遍历 概念 数据:1 2 3 4 5 6 7生成一颗二叉树 上面的数是数据,不是位置,要区别一下数据和位置 红色的代表位置, ...
- Qt-QML-安卓编译问题
Qt的强大在于跨平台,但是在某些地方做的还是不好,想我这种白痴,在编译安卓的时候就遇到新的问题,我在PC上面编译没有问题的,跑到安卓上面就会出现问题,我猜测应该是Qt的下面的编译的时候,用的还是旧的安 ...
- vector的基础使用
vector是一个容器,实现动态数组. 相似点:下标从0开始. 不同点:vector创建对象后,容器大小会随着元素的增多或减少而变化. 基础操作: 1.使用vector需要添加头文件,#include ...
- (一)Spring Boot修改内置Tomcat端口号--解决tomcat端口被占用的问题
Spring Boot 内置Tomcat默认端口号为8080,在开发多个应用调试时很不方便,本文介绍了修改 Spring Boot内置Tomcat端口号的方法. 一.EmbeddedServletCo ...
- Aizu - 2249
注意先保证距离最短,再来判断价格 邻接矩阵回朝内存 ,要用邻接表的 #include<bits/stdc++.h> using namespace std; #define inf 0x ...
- 校招小白机考入坑之从键盘输入java的各种数据类型
//1.从键盘输入一个整型(其他基本类型类似) Scanner sc =new Scanner(System.in); sc.hasNextInt(); int str1 = sc.nextInt() ...
- Java静态方法,静态变量,初始化顺序
1. 静态方法: 成员变量分为实例变量和静态变量.其中实例变量属于某一个具体的实例,必须在类实例化后才真正存在,不同的对象拥有不同的实例变量.而静态变量被该类所有的对象公有(相当于全局变量),不需要实 ...
- js经典试题之原型与继承
js经典试题之原型与继承 1:以下代码中hasOwnProperty的作用是? var obj={} …….. obj.hasOwnProperty("val") 答案:判断obj ...