Arithmancy is Draco Malfoy's favorite subject, but what spoils it for him is that Hermione Granger is in his class, and she is better than him at it. Prime numbers are of mystical importance in Arithmancy, and Lucky Numbers even more so. Lucky Numbers are those positive integers that have at least three distinct prime factors; 30 and 42 are the first two. Malfoy's teacher has given them a positive integer n, and has asked them to find the n-th lucky number. Malfoy would like to beat Hermione at this exercise, so although he is an evil git, please help him, just this once. After all, the know-it-all Hermione does need a lesson.

Input

The first line contains the number of test cases T. Each of the next T lines contains one integer n.

Output

Output T lines, containing the corresponding lucky number for that test case.

Constraints

1 <= T <= 20
1 <= n <= 1000

Example

Sample Input:
2
1
2 Sample Output:
30
42

题意:找第n个由至少三个不同素因子组成的数。

思路:n<=1000直接暴力打表预处理

/** @Date    : 2016-12-11-19.01
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/
#include<bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; int pri[N];
int ans[10010];
int c = 0;
bool vis[N];
int prime()
{
MMF(vis);
for(int i = 2; i < N; i++)
{
if(!vis[i])
pri[c++] = i; for(int j = 0; j < c && pri[j]*i < N; j++)
{
vis[i * pri[j]] = 1;
if(i % pri[j] == 0)
break;
}
}
} int main()
{
prime();
int tot = 0;
for(int i = 0; i <= 10000; i++)
{
int t = i;
int cnt = 0;
for(int j = 0; j < c && pri[j]*pri[j] <= t; j++)
{
if(t % pri[j] == 0)
{
cnt++;
while(t % pri[j] == 0)
t /= pri[j];
}
}
if(t > 1)
cnt++;
if(cnt >= 3)
ans[tot++] = i;
}
int T;
scanf("%d", &T);
while(T--)
{
int n;
scanf("%d", &n);
printf("%d\n", ans[n - 1]);
}
return 0;
}

SPOJ AMR11E Distinct Primes 基础数论的更多相关文章

  1. SPOJ 10232. Distinct Primes

    Arithmancy is Draco Malfoy's favorite subject, but what spoils it for him is that Hermione Granger i ...

  2. (Problem 47)Distinct primes factors

    The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The fi ...

  3. 【SPOJ】Distinct Substrings(后缀自动机)

    [SPOJ]Distinct Substrings(后缀自动机) 题面 Vjudge 题意:求一个串的不同子串的数量 题解 对于这个串构建后缀自动机之后 我们知道每个串出现的次数就是\(right/e ...

  4. 【SPOJ】Distinct Substrings/New Distinct Substrings(后缀数组)

    [SPOJ]Distinct Substrings/New Distinct Substrings(后缀数组) 题面 Vjudge1 Vjudge2 题解 要求的是串的不同的子串个数 两道一模一样的题 ...

  5. LightOJ1214 Large Division 基础数论+同余定理

    Given two integers, a and b, you should check whether a is divisible by b or not. We know that an in ...

  6. HDU-1576 A/B 基础数论+解题报告

    HDU-1576 A/B 基础数论+解题报告 题意 求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973) (我们给定的A必能被B整除,且gcd(B,9973) = 1). 输入 数据 ...

  7. 【SPOJ】Distinct Substrings

    [SPOJ]Distinct Substrings 求不同子串数量 统计每个点有效的字符串数量(第一次出现的) \(\sum\limits_{now=1}^{nod}now.longest-paren ...

  8. RSA算法原理——(2)RSA简介及基础数论知识

    上期为大家介绍了目前常见加密算法,相信阅读过的同学们对目前的加密算法也算是有了一个大概的了解.如果你对这些解密算法概念及特点还不是很清晰的话,昌昌非常推荐大家可以看看HTTPS的加密通信原理,因为HT ...

  9. SPOJ 694. Distinct Substrings (后缀数组不相同的子串的个数)转

    694. Distinct Substrings Problem code: DISUBSTR   Given a string, we need to find the total number o ...

随机推荐

  1. 用命令从mysql中导出/导入表结构及数据

    在命令行下mysql的数据导出有个很好用命令mysqldump,它的参数有一大把,可以这样查看:mysqldump最常用的:mysqldump -uroot -pmysql databasefoo t ...

  2. C Program基础-宏定义

    写好c语言,漂亮的宏定义是非常重要的,我们在阅读别人工程时,往往能看到大量的宏定义,宏定义可以增加代码的可读性,也能增加代码的可移植性,一个好的宏定义甚至是一件艺术品.今天我们就来看看宏定义的方方面面 ...

  3. css3美化radio样式

    .magic-radio{ position: absolute; display: none; } .magic-radio + label { position: relative; displa ...

  4. JSR303中的来验证数据信息

    spring mvc之实现简单的用户管理三 博客分类: spring spring mvc spring mvc dispatcherServlet springspring mvcbean vali ...

  5. LintCode-67.二叉树的中序遍历

    二叉树的中序遍历 给出一棵二叉树,返回其中序遍历. 样例 给出一棵二叉树 {1,#,2,3}, 返回 [1,3,2]. 挑战 你能使用非递归实现么? 标签 递归 二叉树 二叉树遍历 code /** ...

  6. Windows Sever 2008隐藏和系统属性

    由于有些目录为隐藏和系统属性,首先要把 显示系统文件和显示所有文件 功能开启,把隐藏文件和目录显出来. 1.C:\Windows\Web\Wall*** 自带墙纸,不需要的可以删除掉. 2.C:\Wi ...

  7. solr 学习之solrJ

    solrJ是访问Solr服务的JAVA客户端,提供索引和搜索的请求方法,SolrJ通常嵌入在业务系统中,通过solrJ的API接口操作Solr服务. <!-- https://mvnreposi ...

  8. 移除 ios 上 input 的默认样式

    input{ -webkit-appearance:none; }

  9. Log-spectral distance

    Log-spectral distance对数频谱距离 log-spectral distance(LSD),也指 log-spectral distortion,是两个频谱之间的距离度量(用分贝表示 ...

  10. 客户端 new socket时候 就像服务端发起连接了

    客户端 new socket时候  就像服务端发起连接了