题目描述:

  输入正整数K1(K1<=5000),找一个12位正整数K2使得K1K2=K2(mod 1012)。

解题思路:

  压缩映射原理:设X是一个完备的度量空间,映射ƒ:Χ→Χ 把每两点的距离至少压缩λ倍,即d(ƒ(x),ƒ(y))≤λd(x,y),这里λ是一个小于1的常数,那么ƒ必有而且只有一个不动点,而且从Χ的任何点x0出发作出序列x1=ƒ(x0),x2=ƒ(x1),...,xn=ƒ(x(n-1)),...,这序列一定收敛到那个不动点。

  题目要求解的方程形式是f(K2)=K2,很直接地就想到不动点原理。

  另外,K2的值较大,在求解K1K2(mod 1012)时要利用矩阵快速幂,同时由于是对1012取模,两个1012级别的数相乘结果会爆long long,所以在做乘法时要用到O(1)快速乘。

代码如下:

#include<bits/stdc++.h>
using namespace std; typedef long long ll; const ll MOD=1e12; ll mul(ll a,ll b)
{
ll ite=(1ll<<)-;
return (a*(b>>)%MOD*(<<)%MOD+a*(b&ite)%MOD)%MOD;
} ll pow_mod(ll a,ll b)
{
ll ret=; while(b)
{
if(b&)
ret=mul(ret,a)%MOD; b>>=;
a=mul(a,a)%MOD;
}
return ret;
} ll solve(ll n)
{
ll x=1e12;
while()
{
ll ans=pow_mod(n,x);
if(ans==x)
return ans; x=ans;
}
} int main()
{
ll k1;
int Case=;
while(scanf("%lld",&k1)&&k1)
{
ll k2=solve(k1);
printf("Case %d: Public Key = %lld Private Key = %lld\n",++Case,k1,k2);
}
return ;
}

  

UVALive 4998 Simple Encryption的更多相关文章

  1. UVALive 4998 Simple Encryption --DFS

    题意: 给出K1,求一个12位数(不含前导0)K2,使得K1^K2 mod (10^12) = K2. 解法: 求不动点问题. 有一个性质: 如果12位数K2满足如上式子的话,那么K2%1,K2%10 ...

  2. LA 4998 Simple Encryption

    题意:输入正整数$K_1(K_1 \leq 50000)$, 找一个$12$位正整数$K_2$(不能含有前导零)使得${K_1}^{K_2}\equiv K_2(mod10^{12})$. 例如,$K ...

  3. uva 12253 - Simple Encryption(dfs)

    题目链接:uva 12253 - Simple Encryption 题目大意:给定K1.求一个12位的K2,使得KK21=K2%1012 解题思路:按位枚举,不且借用用高速幂取模推断结果. #inc ...

  4. UVALive 5881 Unique Encryption Keys (DP)

    Unique Encryption Keys 题目链接: http://acm.hust.edu.cn/vjudge/problem/26633 Description http://7xjob4.c ...

  5. UVA12253 简单加密法 Simple Encryption

    这题到现在还是只有我一个人过?太冷门了吧,毕竟你谷上很少有人会去做往年ACM比赛的题 题面意思很简单,每次给出\(K_1\),让你求一个\(K_2\)满足\(K_1^{K_2}\equiv K_2(\ ...

  6. What is SSL and what are Certificates?

    Refer to http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/x64.html The content 1.2. What is SSL and ...

  7. Progressive Scramble【模拟】

    问题 J: Progressive Scramble 时间限制: 1 Sec  内存限制: 128 MB 提交: 108  解决: 45 [提交] [状态] [命题人:admin] 题目描述 You ...

  8. ZOJ 1006:Do the Untwist(模拟)

    Do the Untwist Time Limit: 2 Seconds      Memory Limit: 65536 KB Cryptography deals with methods of ...

  9. Do the Untwist(模拟)

    ZOJ Problem Set - 1006 Do the Untwist Time Limit: 2 Seconds      Memory Limit: 65536 KB Cryptography ...

随机推荐

  1. python基础之类的静态方法和类方法

    一 静态方法 通常情况下,在类中定义的所有函数都是对象的绑定方法,对象再调用绑定方法时会自动将自己作为参数传递给方法的第一个参数.除此之外还有两种常见的方法:静态方法和类方法,二者是为类量身定制的,但 ...

  2. JQuery基础与事件和动画

    JQuery语法 1.JQuery("选择器").action; 通过选择器调用时间函数 但Jquery可以用$符号代替,即$("选择器").action; ① ...

  3. centos7 docker镜像加速器配置

    CentOS的配置方式略微复杂,需要先将默认的配置文件复制出来 /lib/systemd/system/docker.service -> /etc/systemd/system/docker. ...

  4. git 解决push报错:[rejected] master -> master (fetch first) error: failed to push some refs to

    今天对代码进行了修改优化,然后往往远程push,但push后报错了 git操作 git add . git commit -m"fix" git push origin maste ...

  5. python线程间数据共享(示例演示)

    ``` import threading data_list = [] def task(arg): data_list.append(arg) print(data_list) def run(): ...

  6. Leetcode 之 Kth Largest Element in an Array

    636.Kth Largest Element in an Array 1.Problem Find the kth largest element in an unsorted array. Not ...

  7. ansible应用

    前言: 假如让你在一组服务器安装某个软件,服务器少的话还可以接受,但如果有上百台服务器的话,这样会耗费大量时间,在这时候Ansible就由此而生:总之Ansible提供的很多模块十分强大. 一.关于a ...

  8. html当前文档的状态

    <script type="text/javascript"> document.onreadystatechange = loadingChange;//当页面加载状 ...

  9. sga之library cache 内部原理

    一.概述 library cache(库缓存)是shared pool中的一块内存区域,它的主要作用是缓存刚刚执行过的sql语句和pl/sql(包括存储过程.包.函数.触发器)所对应的解析计划.解析树 ...

  10. ORACLE常用性能监控SQL(二)

    查询Oracle正在执行的sql语句及执行该语句的用户 SELECT b.sid oracleID, b.username 登录Oracle用户名, b.serial#, spid 操作系统ID, p ...