[poj2486]Apple Tree
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10800   Accepted: 3629

Description

Wshxzt is a lovely girl. She likes apple very much. One day HX takes her to an apple tree. There are N nodes in the tree. Each node has an amount of apples. Wshxzt starts her happy trip at one node. She can eat up all the apples in the nodes she reaches. HX is a kind guy. He knows that eating too many can make the lovely girl become fat. So he doesn’t allow Wshxzt to go more than K steps in the tree. It costs one step when she goes from one node to another adjacent node. Wshxzt likes apple very much. So she wants to eat as many as she can. Can you tell how many apples she can eat in at most K steps.

Input

There are several test cases in the input 
Each test case contains three parts. 
The first part is two numbers N K, whose meanings we have talked about just now. We denote the nodes by 1 2 ... N. Since it is a tree, each node can reach any other in only one route. (1<=N<=100, 0<=K<=200) 
The second part contains N integers (All integers are nonnegative and not bigger than 1000). The ith number is the amount of apples in Node i. 
The third part contains N-1 line. There are two numbers A,B in each line, meaning that Node A and Node B are adjacent. 
Input will be ended by the end of file.

Note: Wshxzt starts at Node 1.

Output

For each test case, output the maximal numbers of apples Wshxzt can eat at a line.

Sample Input

2 1
0 11
1 2
3 2
0 1 2
1 2
1 3

Sample Output

11
2

Source

POJ Contest,Author:magicpig@ZSU
 
题目大意:从N个点的树的根(1)出发,走V步,每个点都有一个权值,问能经过的最大权值和是多少?
试题分析:树形dp一般情况下是有一颗树,询问这棵树的某些最优性信息或者方案数信息。
     本题有N与V所以至少有两个状态:dp[N][V];
     考虑dp[i][j]的转移:dp[i][j]=max(dp[i->son][v-1])+a[i]
     但是这样我们就会发现一个问题:如果是以现在的i为最近公共祖先的两个点呢?是不是没有被包括?
     所以这样的状态不够,我们设计dp[N][V][2]的状态,01表示回不回i节点
     所以得出:dp[i][j][0]=max(dp[i][j][0],dp[i->son][t-1][0]+dp[i][j-t][1]+a[i]);//从其它子树转了一圈回来再转到这可子树并不回去了。
          dp[i][j][0]=max(dp[i][j][0],dp[i->son][t-1][1]+dp[i][j-t][0]+a[i])//从这颗子树回到i再到其它子树不会来了
          dp[i][j][1]=max(dp[i][j][1],dp[i->son][t-1][1]+dp[i][j-t][1]+a[i])//走回i
 
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<stack>
#include<algorithm>
using namespace std; inline int read(){
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int MAXN=100001;
const int INF=999999;
int N,V;
vector<int> vec[301];
int dp[301][301][2];
int a[301]; void dfs(int x,int fa){
for(int i=0;i<vec[x].size();i++){
if(vec[x][i]==fa) continue;
dfs(vec[x][i],x);
int SON=vec[x][i];
for(int v=V;v>=1;v--){
for(int k=1;k<=v;k++){
dp[x][v][0]=max(dp[x][v][0],dp[x][v-k][1]+dp[SON][k-1][0]);//从别的子树兜了一圈到这可子树,不回去了
dp[x][v][0]=max(dp[x][v][0],dp[x][v-k][0]+dp[SON][k-2][1]);//从这颗子树兜了一圈到别的子树,不回去了
dp[x][v][1]=max(dp[x][v][1],dp[x][v-k][1]+dp[SON][k-2][1]);//从别的子树兜了一圈到这可子树然后还回去
}
}
}
}
int ans; int main(){
while(scanf("%d%d",&N,&V)!=EOF){
for(int i=1;i<=300;i++) vec[i].clear();
memset(dp,0,sizeof(dp));
ans=0;
for(int i=1;i<=N;i++) a[i]=read();
if(N==1){//注意要特判
printf("%d\n",a[1]);
continue;
}
for(int i=1;i<N;i++){
int u=read(),v=read();
vec[u].push_back(v);
vec[v].push_back(u);
}
for(int i=1;i<=N;i++)
for(int j=0;j<=V;j++){
dp[i][j][0]=dp[i][j][1]=a[i];
}
dfs(1,0);
printf("%d\n",max(dp[1][V][0],dp[1][V][1]));
}
}

  

【树形dp】Apple Tree的更多相关文章

  1. POJ 2486 树形背包DP Apple Tree

    设d(u, j, 0)表示在以u为根的子树中至多走k步并且最终返回u,能吃到的最多的苹果. 则有状态转移方程: #include <iostream> #include <cstdi ...

  2. HDU 5379 树形DP Mahjong tree

    任意一棵子树上节点的编号连续,每个节点的所有二字节点连续,求编号方案的总数. 稍微分析一下可知 每个节点的非叶子节点个数不能多于两个,否则这个子树无解,从而整棵树都无解. 每棵子树将所有节点按照编号从 ...

  3. CodeForces 109C 树形DP Lucky Tree

    赶脚官方题解写得挺清楚的说,=_= 注意数据范围用long long,否则会溢出. #include <iostream> #include <cstdio> #include ...

  4. 【POJ 2486】 Apple Tree (树形DP)

    Apple Tree Description Wshxzt is a lovely girl. She likes apple very much. One day HX takes her to a ...

  5. poj 2486 Apple Tree(树形DP 状态方程有点难想)

    Apple Tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9808   Accepted: 3260 Descri ...

  6. URAL1018 Binary Apple Tree(树形DP)

    题目大概说一棵n结点二叉苹果树,n-1个分支,每个分支各有苹果,1是根,要删掉若干个分支,保留q个分支,问最多能保留几个苹果. 挺简单的树形DP,因为是二叉树,都不需要树上背包什么的. dp[u][k ...

  7. POJ 2486 Apple Tree(树形DP)

    题目链接 树形DP很弱啊,开始看题,觉得貌似挺简单的,然后发现貌似还可以往回走...然后就不知道怎么做了... 看看了题解http://www.cnblogs.com/wuyiqi/archive/2 ...

  8. ural 1018 Binary Apple Tree(树形dp | 经典)

    本文出自   http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...

  9. Apple Tree POJ - 2486 (树形dp)

    题目链接: D - 树形dp  POJ - 2486 题目大意:一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走V步,最多能遍历到的权值 学习网址:https://blog.c ...

随机推荐

  1. 阿里云服务器下安装配置 vsftpd —— 基于CentOS 6.3 【简洁版】

    原文链接:http://www.tuicool.com/articles/nuiQBja 1.更新yum源 我是直接 yum update 更新的 2.安装vsftp 使用yum命令安装vsftpd ...

  2. dokuwiki安装部署

    dokuwiki的地址:https://www.dokuwiki.org/dokuwiki# 1.部署dokuwiki 在D:\xampp\htdocs(xampp安装目录)新建一个doku文件夹,把 ...

  3. python设计模式之单例模式(一)

    单例设计模式的概念: 单例设计模式即确保类有且只有一个特定类型的对象,并提供全局访问点.一般我们操作数据库的时候为了避免统一资源产生互相冲突,创建单例模式可以维护数据的唯一性. 单例模式的特性: 确保 ...

  4. 微信小程序的下拉刷新

    微信小程序的下拉刷新:在page的js文件中有监听用户下拉刷新的处理函数onPullDownRefresh:function(){} //js文件中自带的处理函数,在onUnload下面,注意不要重复 ...

  5. docker安装(2016-08-25版本)

    . 通过命令对系统的版本进行查看 [root@localhost ~]# uname -a [root@localhost ~]# cat /etc/issue --> 如果是6.5之前的版本 ...

  6. 使用Storm实现实时大数据分析(转)

    原文链接:http://blog.csdn.net/hguisu/article/details/8454368 简单和明了,Storm让大数据分析变得轻松加愉快. 当今世界,公司的日常运营经常会生成 ...

  7. PostGIS pgrouting路径分析

    --让数据库支持PostGIS和pgRouting的函数和基础表(安装后第一次使用时执行,以后都不再执行) CREATE EXTENSION postgis; CREATE EXTENSION pgr ...

  8. mui页面跳转

    $('.mui-title').on('click',function(){ mui.openWindow({ //跳转到指导信息页面 url:"/index.php?m=mobile&am ...

  9. hdu 2768(建图,最大点独立集)

    Cat vs. Dog Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  10. Populating Next Right Pointers in Each Node I&&II ——II仍然需要认真看看

    Populating Next Right Pointers in Each Node I Given a binary tree struct TreeLinkNode { TreeLinkNode ...