[poj2486]Apple Tree
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10800   Accepted: 3629

Description

Wshxzt is a lovely girl. She likes apple very much. One day HX takes her to an apple tree. There are N nodes in the tree. Each node has an amount of apples. Wshxzt starts her happy trip at one node. She can eat up all the apples in the nodes she reaches. HX is a kind guy. He knows that eating too many can make the lovely girl become fat. So he doesn’t allow Wshxzt to go more than K steps in the tree. It costs one step when she goes from one node to another adjacent node. Wshxzt likes apple very much. So she wants to eat as many as she can. Can you tell how many apples she can eat in at most K steps.

Input

There are several test cases in the input 
Each test case contains three parts. 
The first part is two numbers N K, whose meanings we have talked about just now. We denote the nodes by 1 2 ... N. Since it is a tree, each node can reach any other in only one route. (1<=N<=100, 0<=K<=200) 
The second part contains N integers (All integers are nonnegative and not bigger than 1000). The ith number is the amount of apples in Node i. 
The third part contains N-1 line. There are two numbers A,B in each line, meaning that Node A and Node B are adjacent. 
Input will be ended by the end of file.

Note: Wshxzt starts at Node 1.

Output

For each test case, output the maximal numbers of apples Wshxzt can eat at a line.

Sample Input

2 1
0 11
1 2
3 2
0 1 2
1 2
1 3

Sample Output

11
2

Source

POJ Contest,Author:magicpig@ZSU
 
题目大意:从N个点的树的根(1)出发,走V步,每个点都有一个权值,问能经过的最大权值和是多少?
试题分析:树形dp一般情况下是有一颗树,询问这棵树的某些最优性信息或者方案数信息。
     本题有N与V所以至少有两个状态:dp[N][V];
     考虑dp[i][j]的转移:dp[i][j]=max(dp[i->son][v-1])+a[i]
     但是这样我们就会发现一个问题:如果是以现在的i为最近公共祖先的两个点呢?是不是没有被包括?
     所以这样的状态不够,我们设计dp[N][V][2]的状态,01表示回不回i节点
     所以得出:dp[i][j][0]=max(dp[i][j][0],dp[i->son][t-1][0]+dp[i][j-t][1]+a[i]);//从其它子树转了一圈回来再转到这可子树并不回去了。
          dp[i][j][0]=max(dp[i][j][0],dp[i->son][t-1][1]+dp[i][j-t][0]+a[i])//从这颗子树回到i再到其它子树不会来了
          dp[i][j][1]=max(dp[i][j][1],dp[i->son][t-1][1]+dp[i][j-t][1]+a[i])//走回i
 
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<stack>
#include<algorithm>
using namespace std; inline int read(){
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int MAXN=100001;
const int INF=999999;
int N,V;
vector<int> vec[301];
int dp[301][301][2];
int a[301]; void dfs(int x,int fa){
for(int i=0;i<vec[x].size();i++){
if(vec[x][i]==fa) continue;
dfs(vec[x][i],x);
int SON=vec[x][i];
for(int v=V;v>=1;v--){
for(int k=1;k<=v;k++){
dp[x][v][0]=max(dp[x][v][0],dp[x][v-k][1]+dp[SON][k-1][0]);//从别的子树兜了一圈到这可子树,不回去了
dp[x][v][0]=max(dp[x][v][0],dp[x][v-k][0]+dp[SON][k-2][1]);//从这颗子树兜了一圈到别的子树,不回去了
dp[x][v][1]=max(dp[x][v][1],dp[x][v-k][1]+dp[SON][k-2][1]);//从别的子树兜了一圈到这可子树然后还回去
}
}
}
}
int ans; int main(){
while(scanf("%d%d",&N,&V)!=EOF){
for(int i=1;i<=300;i++) vec[i].clear();
memset(dp,0,sizeof(dp));
ans=0;
for(int i=1;i<=N;i++) a[i]=read();
if(N==1){//注意要特判
printf("%d\n",a[1]);
continue;
}
for(int i=1;i<N;i++){
int u=read(),v=read();
vec[u].push_back(v);
vec[v].push_back(u);
}
for(int i=1;i<=N;i++)
for(int j=0;j<=V;j++){
dp[i][j][0]=dp[i][j][1]=a[i];
}
dfs(1,0);
printf("%d\n",max(dp[1][V][0],dp[1][V][1]));
}
}

  

【树形dp】Apple Tree的更多相关文章

  1. POJ 2486 树形背包DP Apple Tree

    设d(u, j, 0)表示在以u为根的子树中至多走k步并且最终返回u,能吃到的最多的苹果. 则有状态转移方程: #include <iostream> #include <cstdi ...

  2. HDU 5379 树形DP Mahjong tree

    任意一棵子树上节点的编号连续,每个节点的所有二字节点连续,求编号方案的总数. 稍微分析一下可知 每个节点的非叶子节点个数不能多于两个,否则这个子树无解,从而整棵树都无解. 每棵子树将所有节点按照编号从 ...

  3. CodeForces 109C 树形DP Lucky Tree

    赶脚官方题解写得挺清楚的说,=_= 注意数据范围用long long,否则会溢出. #include <iostream> #include <cstdio> #include ...

  4. 【POJ 2486】 Apple Tree (树形DP)

    Apple Tree Description Wshxzt is a lovely girl. She likes apple very much. One day HX takes her to a ...

  5. poj 2486 Apple Tree(树形DP 状态方程有点难想)

    Apple Tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9808   Accepted: 3260 Descri ...

  6. URAL1018 Binary Apple Tree(树形DP)

    题目大概说一棵n结点二叉苹果树,n-1个分支,每个分支各有苹果,1是根,要删掉若干个分支,保留q个分支,问最多能保留几个苹果. 挺简单的树形DP,因为是二叉树,都不需要树上背包什么的. dp[u][k ...

  7. POJ 2486 Apple Tree(树形DP)

    题目链接 树形DP很弱啊,开始看题,觉得貌似挺简单的,然后发现貌似还可以往回走...然后就不知道怎么做了... 看看了题解http://www.cnblogs.com/wuyiqi/archive/2 ...

  8. ural 1018 Binary Apple Tree(树形dp | 经典)

    本文出自   http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...

  9. Apple Tree POJ - 2486 (树形dp)

    题目链接: D - 树形dp  POJ - 2486 题目大意:一颗树,n个点(1-n),n-1条边,每个点上有一个权值,求从1出发,走V步,最多能遍历到的权值 学习网址:https://blog.c ...

随机推荐

  1. Zabbix 通过 JMX 监控 java 进程

    参考: [ JMX monitoring ] [ Zabbix Java gateway ] [ JMX Monitoring (Java Gateway) not Working ] [ Monit ...

  2. Codeforces Round #483 (Div. 2) [Thanks, Botan Investments and Victor Shaburov!]

    题目链接:http://codeforces.com/contest/984 A. Game time limit per test:2 seconds memory limit per test:5 ...

  3. poj 3751 时间日期格式转换

    题目链接:http://poj.org/problem?id=3751 题目大意:按照要求的格式将输入的时间日期进行转化. #include <iostream> #include < ...

  4. Intel MKL(Math Kernel Library)

    1.Intel MKL简介 Intel数学核心函数库(MKL)是一套高度优化.线程安全的数学例程.函数,面向高性能的工程.科学与财务应用.英特尔 MKL 的集群版本包括 ScaLAPACK 与分布式内 ...

  5. python基础===discover函数介绍

    discover(start_dir,pattern='test*.py',top_level_dir=None) 找到指定目录下所有测试模块,并可递归查到子目录下的测试木块,只有匹配到的文件名才会被 ...

  6. 【jzoj2017.8.21提高组A】

    太菜了,刷刷NOIP题玩玩. 今天的题好像以前有做过(雾) A. #include<bits/stdc++.h> typedef long long ll; ],cnt; ll x; in ...

  7. linux的rpm教程

    1.rmp查询 1.1 软件包详细信息 rpm -qpi  httpd-2.4.25-9.fc27.x86_64.rpm 系统将会列出这个软件包的详细资料,包括含有多少个文件.各文件名称.文件大小.创 ...

  8. Fel表达式实践

    项目背景 订单完成后,会由交易系统推送实时MQ消息给订单清算系统,告诉清算系统此订单交易完成,可以进行给商家结算等后续操作. 财务要求在交易推送订单到清算系统时和订单清算系统接收到订单消息后,需要按照 ...

  9. resteasy json

    https://www.cnblogs.com/toSeeMyDream/p/5763725.html

  10. Python 什么是ORM?

    关系映射 性能比源生sql效率略差一些 操作性更简单,快捷 Django的orm和sqlalchamy 区别 sqlalchamy没有django的功能全,不支持双下划线的连表跨表操作 sqlalch ...