http://www.lydsy.com/JudgeOnline/problem.php?id=3238

后缀数组裸题但是\(5\times 10^5\)貌似常数有点大就过不了?(我的sa常数那么大想了想还是算了吧qwq)

两个后缀的lcp就是反串的后缀自动机上两个状态在parent树上的lca,lcp的长度就是lca的maxlen。

这样在parent树上树形dp一下就可以了qwq

时间复杂度\(O(n)\)。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll; const int N = 500003; struct State {
State *par, *go[26], *point, *nxt;
int val, sz;
} pool[N << 1], *root, *last; int top = 0;
State *newState(int num) {
State *t = pool + top++;
t->par = t->point = t->nxt = 0;
memset(t->go, 0, sizeof(t->go));
t->val = num; t->sz = 0;
return t;
} void extend(int w) {
State *p = last;
State *np = newState(p->val + 1); np->sz = 1;
while (p && p->go[w] == 0)
p->go[w] = np, p = p->par;
if (p == 0) np->par = root;
else {
State *q = p->go[w];
if (q->val == p->val +1)
np->par = q;
else {
State *nq = newState(p->val + 1);
memcpy(nq->go, q->go, sizeof(q->go));
nq->par = q->par; q->par = np->par = nq;
while (p && p->go[w] == q)
p->go[w] = nq, p = p->par;
}
}
last = np;
} char s[N];
int n; ll ans = 0; void dfs(State *r) {
for (State *t = r->point; t; t = t->nxt) {
dfs(t);
ans += 1ll * r->val * r->sz * t->sz;
r->sz += t->sz;
}
} int main() {
scanf("%s", s + 1);
n = strlen(s + 1);
root = last = newState(0);
for (int i = n; i >= 1; --i)
extend(s[i] - 'a'); for (int i = 1; i < top; ++i) {
State *r = pool + i;
r->nxt = r->par->point;
r->par->point = r;
} dfs(pool);
printf("%lld\n", (1ll * n * (n + 1) * (n - 1) >> 1) - (ans << 1));
return 0;
}

【BZOJ 3238】【AHOI 2013】差异的更多相关文章

  1. [BZOJ 3238] [AHOI 2013] 差异 【后缀数组 + 单调栈】

    题目链接:BZOJ - 3238 题目分析 显然,这道题就是求任意两个后缀之间的LCP的和,这与后缀数组的联系十分明显. 求出后缀数组后,求出字典序相邻两个后缀的LCP,即 Height 数组. 那么 ...

  2. BZOJ 3236 AHOI 2013 作业 莫队+树状数组

    BZOJ 3236 AHOI 2013 作业 内存限制:512 MiB 时间限制:10000 ms 标准输入输出     题目类型:传统 评测方式:文本比较 题目大意: 此时己是凌晨两点,刚刚做了Co ...

  3. bzoj[3238][ahoi差异]

    Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Output HINT 2<=N<=5 ...

  4. BZOJ 3236 AHOI 2013 作业 莫队算法

    题目大意:给出一些数,问在一个区间中不同的数值有多少种,和在一个区间中不同的数值有多少个. 思路:因为没有改动,所以就想到了莫队算法.然后我写了5K+的曼哈顿距离最小生成树,然后果断T了.(100s的 ...

  5. [AHOI 2013]差异

    Description 题库链接 给定一个长度为 \(n\) 的字符串 \(S\) ,令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀.求 \[\sum_{1\leqslant i< ...

  6. BZOJ3238:[AHOI 2013]差异

    求一个字符串的∑ ∑ len[i] + len[j] - 2 * lcp(i, j),其中i,j表示从i,j开始的后缀. 方法一:SA+单调栈,自行yy. 方法二:SAM构造出来,然后每个状态对答案的 ...

  7. 【BZOJ 3238】[Ahoi2013]差异

    [链接]h在这里写链接 [题意]     还有更简洁的题目描述吗/xk [题解]     对于lenti+lentj这一部分,比较好处理.     可以弄一个前缀和.     然后O(N)扫描一遍. ...

  8. BZOJ 3238 差异

    BZOJ 3238 差异 看这个式子其实就是求任意两个后缀的 $ LCP $ 长度和.前面的 $ len(T_i)+len(T_j) $ 求和其实就是 $ n(n-1)(n+1)/2 $ ,这个是很好 ...

  9. [BZOJ 3167][HEOI 2013]SAO

    [BZOJ 3167][HEOI 2013]SAO 题意 对一个长度为 \(n\) 的排列作出 \(n-1\) 种限制, 每种限制形如 "\(x\) 在 \(y\) 之前" 或 & ...

  10. [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+并查集+启发式合并)

    [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+启发式合并) 题面 给出一个n个节点m条边的森林,每个节点都有一个权值.有两种操作: Q x y k查询点x到点y路径上所有的权值中 ...

随机推荐

  1. 【BZOJ4069】【APIO2015】巴厘岛的雕塑 [贪心][DP]

    巴厘岛的雕塑 Time Limit: 10 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description 印尼巴厘岛的公路上有许多的雕塑, ...

  2. 洛谷金秋夏令营模拟赛 第2场 T11738 伪神

    调了一个下午只有八十分QAQ md弃了不管了 对拍也没拍出来 鬼知道是什么数据把我卡了QAQ 没事我只是个SB而已 这题其实还是蛮正常的 做法其实很简单 根据链剖的构造方法 你每次修改都是一段又一段的 ...

  3. 获取子iframe框架的元素

    我们常常遇到使用iframe框的时候,该iframe框不能根据自己内部的内容撑起来的这种问题 必要条件:不能在跨域的情况下...本地可以放到localhost下进行测试 //父页面index.html ...

  4. Java中class的初始化顺序

     由于Java 中的一切东西都是对象,所以许多活动 变得更加简单,这个问题便是其中的一例. 除非真的需要代码,否则那个文件是不会载入的.通常,我们可认为除非那个类的一个对象构造完毕,  否则代码不会真 ...

  5. sublime3插件安装及报错处理

    ctrl+shift+p调用出窗口:输入install package,然后输入想安装的插件. 有些用户安装的可能是国内破解版的,我的就是,然后install package报错: Package C ...

  6. [Leetcode Week13]Palindrome Partitioning

    Palindrome Partitioning 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/palindrome-partitioning/desc ...

  7. C++学习之路(八):关于C++提供的强制类型转换

    C语言中提供了旧式的强制类型转换方法.比如: int a  =1; char *p = (char *)&a; 上述将a的地址单元强制转换为char类型的指针.这里暂且不说上述转换结果是否合理 ...

  8. Linux 入门记录:十八、Linux 系统启动流程 + 单用户修改 root 密码 + GRUB 加密

    一.系统启动流程 一般来说,Linux 系统的启动流程是这样的: 1. 开机之后,位于计算机主板 ROM 芯片上的 BIOS 被最先读取,在进行硬件和内存的校验以及 CPU 的自检没有异常后, BIO ...

  9. Git 常用命令速查表(图文+表格)【转】

    转自:http://www.jb51.net/article/55442.htm 一. Git 常用命令速查 git branch 查看本地所有分支git status 查看当前状态 git comm ...

  10. 007 Java并发编程:Callable、Future和FutureTask

    原文https://www.cnblogs.com/dolphin0520/p/3949310.html Java并发编程:Callable.Future和FutureTask 在前面的文章中我们讲述 ...