Link:

ARC 066 传送门

C:

如果存在可行方案则答案为$2^{n/2}$

#include <bits/stdc++.h>

using namespace std;
#define X first
#define Y second
typedef long long ll;
typedef pair<int,int> P;
const int MAXN=1e5+,MOD=1e9+;
int n,x,res[MAXN]; int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&x);
int rk=(n-+x)/;
if(!res[rk+]) res[rk+]=i;
else if(!res[n-rk]) res[n-rk]=i;
else return puts(""),;
}
int res=;
for(int i=;i<=n/;i++) (res*=)%=MOD;
printf("%d",res);
return ;
}

Problem C

D:

挺不错的一道数位$dp$

由于无法直接计算$sum$和$xor$的对数,因此考虑枚举$a,b$,而将$sum,xor\le n$作为限制条件

又因为公式:$a+b=aXORb+2*(a\&b)$,所以$a+b\le aXORb$,只考虑$a+b$的限制即可

此时问题转化为对于每个$sum\le n$求$xor$的取值个数

这样就可以用$dp[i][s]$表示前$i$位确定,$a+b$的和为$s$的个数,每次分$a,b$在该位上总共有几个1转移

(按每位1的个数转移才不会考虑异或与和同时相同的情况!)

但这样复杂度是不对的,在枚举$s$上明显花费了不必要的时间

根据一般数位$dp$记录上限的思想,如果前$i$位的$n-s\ge 2$,这些数以后都保证合法,就能统一计算了

这样就从$dp[i][s]$变成了$dp[i][0/1/2]$

#include <bits/stdc++.h>

using namespace std;
#define X first
#define Y second
typedef long long ll;
typedef pair<int,int> P;
#define MAX_D 64
#define MOD ((ll)1e9 + 7)
ll N,dp[MAX_D][],res;int nxt; int main()
{
scanf("%lld",&N);
dp[MAX_D-][]=;
for(int i=MAX_D-;i>;i--)
for(int j=; j <= ; j++)
for(int k=;k<=;k++)
{
nxt=j*+((N>>(i-))&)-k;
if (nxt<) continue;
nxt=nxt>?:nxt;
(dp[i-][nxt]+=dp[i][j])%=MOD;
}
res=;
for (int i=;i<=;i++) (res+=dp[][i])%=MOD;
printf("%lld\n", res);
return ;
}

Solution A

从后往前用记忆化搜索的形式写起来更加方便

一开始将上限值就设为$n$,每次确定最后一位取几个以后去掉最后一位,不用考虑和的合法性了

#include <bits/stdc++.h>

using namespace std;
#define X first
#define Y second
typedef long long ll;
typedef pair<int,int> P;
const int MOD=1e9+;
map<ll,ll> dp;ll n; ll dfs(ll x)
{
if(dp.count(x)) return dp[x];
return dp[x]=(dfs(x>>)+dfs((x-)>>)+dfs((x-)>>))%MOD;
} int main()
{
scanf("%lld",&n);
dp[]=;dp[]=;
printf("%lld",dfs(n));
return ;
}

Solution B

E:

首先要观察出几点性质:

1、只有在减号后可能加括号

2、括号不可能嵌套超过两层,否则可以转化为只有两层的简化情况

这样就可以记录$dp[0/1/2]$分别表示当前还有几个左括号未匹配的最大值来$dp$了

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
int n,x;char op;ll dp[],nxt[]; int main()
{
scanf("%d%d",&n,&dp[]);
dp[]=dp[]=-1ll<<;
for(int i=;i<n;i++)
{
scanf(" %c%d",&op,&x);
if(op=='-') x=-x;
nxt[]=dp[]+x,nxt[]=dp[]-x,nxt[]=dp[]+x;
dp[]=max(nxt[],max(nxt[],nxt[]));
if(op=='+') dp[]=max(nxt[],nxt[]),dp[]=nxt[];
else dp[]=dp[],dp[]=max(nxt[],nxt[]);
}
printf("%lld",dp[]);
return ;
}

Solution A

其实也可以不用$dp$,考虑如果在某个减号后加了第一个括号的最优解

发现此时能保证将下一个减号后的值都变为正贡献,但对当前位到下一个减号间的值是无能为力的

这样枚举第一个括号的位置对答案更新即可

#include <bits/stdc++.h>

using namespace std;
#define X first
#define Y second
typedef long long ll;
typedef pair<int,int> P;
const int MAXN=1e5+;
char op[MAXN];
int n,dat[MAXN],nxt[MAXN],fst;
ll suf[MAXN],cur,res=-1ll<<; int main()
{
scanf("%d%d",&n,&fst);
for(int i=;i<n;i++)
scanf(" %c%d",&op[i],&dat[i]);
cur=n;
for(int i=n-;i;i--)
{
suf[i]=suf[i+]+dat[i];
if(op[i]=='-') nxt[i]=cur,cur=i;
}
cur=;
for(int i=;i<n;i++)
if(op[i]=='-')
res=max(res,cur-suf[i]+*suf[nxt[i]]),cur-=dat[i];
else cur+=dat[i];
res=max(res,cur);
printf("%lld",res+fst);
return ;
}

Solution B

F:

[ARC 066] Tutorial的更多相关文章

  1. AtCoder Regular Contest

    一句话题解 因为上篇AGC的写的有点长……估计这篇也短不了所以放个一句话题解方便查阅啥的吧QwQ 具体的题意代码题解还是往下翻…… ARC 058 D:简单容斥计数. E:用二进制表示放的数字,然后状 ...

  2. HTML5 Canvas Arc Tutorial

    HTML5 Canvas Arc Tutorial HTML5 Canvas Arc Tutorial  

  3. [Hive - Tutorial] Built In Operators and Functions 内置操作符与内置函数

    Built-in Operators Relational Operators The following operators compare the passed operands and gene ...

  4. 【转】Enable ARC in a Cocos2D Project: The Step-by-Step-How-To-Guide Woof-Woof!

    On April 5, 2012, in idevblogaday, by Steffen Itterheim http://www.learn-cocos2d.com/2012/04/enablin ...

  5. GDI+ Tutorial for Beginners

    原文 GDI+ Tutorial for Beginners GDI+ is next evolution of GDI. Using GDI objects in earlier versions ...

  6. MapServer Tutorial——MapServer7.2.1教程学习——第一节用例实践:Example1.7 Adding a wms layer

    MapServer Tutorial——MapServer7.2.1教程学习——第一节用例实践:Example1.7 Adding a wms layer 前言 Add OGC WMS Layers( ...

  7. MapServer Tutorial——MapServer7.2.1教程学习——第一节用例实践:Example1.6 Defining Projections and Extents

    MapServer Tutorial——MapServer7.2.1教程学习——第一节用例实践:Example1.6 Defining Projections and Extents 一.前言 当在m ...

  8. MapServer Tutorial——MapServer7.2.1教程学习——第一节用例实践:Example1.5 Adding a raster layer

    MapServer Tutorial——MapServer7.2.1教程学习——第一节用例实践:Example1.5 Adding a  raster layer 一.前言 MapServer不仅支持 ...

  9. Instruments Tutorial for iOS: How To Debug Memory Leaks【转】

    If you're new here, you may want to subscribe to my RSS feed or follow me on Twitter. Thanks for vis ...

随机推荐

  1. Ubuntu中启用关闭Network-manager网络设置问题! 【Server版本】

    在UbuntuServer版本中,因为只存有命令行模式,所以要想进行网络参数设置,只能通过修改/etc/network/interfaces.具体设置方法如下: (1) UbuntuServer 修改 ...

  2. python按比例随机切分数据

    在机器学习或者深度学习中,我们常常碰到一个问题是数据集的切分.比如在一个比赛中,举办方给我们的只是一个带标注的训练集和不带标注的测试集.其中训练集是用于训练,而测试集用于已训练模型上跑出一个结果,然后 ...

  3. 如何在本地用vs调试微信接口

    这段时间在研究微信,看了网上很多都是把项目发布之后在服务器上调试,可以我想可以直接在vs上面设置断点调试 刚开始才用 http://www.cnblogs.com/hanzhaoxin/p/45186 ...

  4. [Deep dig] ViewController初始化过程调查

    代码:https://github.com/xufeng79x/ViewControllerLife 1.简介: 介绍xib方式.storyborad方式以及code方式下ViewController ...

  5. [How to]Cloudera manager 离线安装手册

    2016-01-1910:54:05  增加kafka 1.简介 本文介绍在离线环境下安装Cloudera manager和简单使用方法 2.环境 OS:CentOS 6.7 Cloudera man ...

  6. apache加入chkconfig

    #First Step: cp /usr/local/apache2/bin/apachectl /etc/init.d/httpd #Second Step: vim /etc/init.d/htt ...

  7. js cookies的使用及介绍 (非常详细)

    设置cookie 每个cookie都是一个名/值对,可以把下面这样一个字符串赋值给document.cookie:document.cookie="userId=828";如果要一 ...

  8. 用JavaScript校验日期的合法性

    校验表单时可能会遇到校验日期是否正确.可以利用JS的内置对象Date帮助我们完成日期校验. 思路是首先用被校验日期(假设为A,可能为字符串或数字)创建一个Date对象(假设为B). 然后判断A和B的年 ...

  9. python初学--文件操作、字典

    文件读写 1.先打开文件 2.读取/写入内容 3.保存文件   文件的open模式有三种 1.w 写模式,它是不能读的 只要用w打开文件,文件中的东西都会被清空 w+, 写读模式,只要沾上w 就会清空 ...

  10. linux命令(13):kill/killall命令

    停止指定的进程名:kill 进程ID号 把所有httpd进程杀掉:killall httpd 强制停止进程mysqld:killall -9 mysqld