http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239

还是模板题。

杜教筛:$$S(n)=\frac{n(n+1)}{2}-\sum_{i=2}^nS\left(\left\lfloor\frac ni\right\rfloor\right)$$

基于质因子分解的筛法:详见2016年论文《积性函数求和的几种方法》(讲得很详细的~~~)

为什么我写的洲哥筛常熟巨大QAQ

杜教筛\(O\left(n^{\frac 23}\right)\)

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll N = 1E10;
const int UP = 3981071;
const int mo = 1000000007;
const int ni2 = 500000004; int phi[UP + 3], prime[UP + 3], num = 0, sum[UP + 3];
bool notp[UP + 3]; void Euler_shai() {
sum[1] = phi[1] = 1;
for (int i = 2; i <= UP; ++i) {
if (!notp[i]) {
prime[++num] = i;
phi[i] = i - 1;
}
for (int j = 1, pro; j <= num && (pro = prime[j] * i) <= UP; ++j) {
notp[pro] = true;
if (i % prime[j] == 0) {
phi[pro] = phi[i] * prime[j];
break;
} else
phi[pro] = phi[i] * phi[prime[j]];
}
sum[i] = (sum[i - 1] + phi[i]) % mo;
}
} struct HashTable {
static const int p = 1000007;
ll val[p], ref[p];
HashTable() {memset(ref, -1, sizeof(ref));} void add(ll pos, ll nu) {
int tmp = pos % p;
while (ref[tmp] != -1) {
if (ref[tmp] == pos) return;
++tmp; if (tmp == p) tmp = 0;
}
ref[tmp] = pos;
val[tmp] = nu;
} ll query(ll pos) {
int tmp = pos % p;
while (ref[tmp] != pos) {++tmp; if (tmp == p) tmp = 0;}
return val[tmp];
}
} HT; ll Sum(ll x) {
return x <= UP ? sum[x] : HT.query(x);
} void DJ_shai(ll n) {
for (ll i = n, y; i >= 1; i = n / (y + 1)) {
y = n / i;
if (y <= UP) continue;
ll ret = 0;
for (ll j = 2, l, pre = 1; j <= y; ++j) {
l = y / j;
j = y / l;
ret = (ret + Sum(l) * ((j - pre) % mo) % mo) % mo;
pre = j;
}
HT.add(y, (y % mo * ((y + 1) % mo) % mo * ni2 % mo - ret + mo) % mo);
}
} main() {
Euler_shai();
ll top;
scanf("%lld", &top);
DJ_shai(top);
printf("%lld\n", Sum(top));
return 0;
}

基于质因子分解的筛法\(O\left(\frac{n^{\frac 34}}{\log n}\right)\)

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 1E10;
const int UP = 1E5;
const int mo = 1000000007;
const int ni2 = 500000004; bool notp[UP + 3];
ll G0[UP * 2 + 3], G1[UP * 2 + 3], F[UP * 2 + 3], J[UP * 2 + 3];
int prime[UP + 3], sum_prime[UP + 3], sum_phi[UP + 3], phi[UP + 3], sum_p[UP + 3];
int pre[UP * 2 + 3], num = 0, ma[UP + 3]; void Euler_shai(int n) {
phi[1] = sum_phi[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!notp[i]) {
prime[++num] = i;
sum_prime[num] = (sum_prime[num - 1] + i) % mo;
phi[i] = i - 1;
sum_p[i] = (sum_p[i - 1] + i - 1) % mo;
ma[i] = num;
} else {
sum_p[i] = sum_p[i - 1];
ma[i] = ma[i - 1];
}
for (int j = 1, pro; j <= num && (pro = i * prime[j]) <= n; ++j) {
notp[pro] = true;
if (i % prime[j] == 0) {
phi[pro] = 1ll * phi[i] * prime[j] % mo;
break;
} else
phi[pro] = 1ll * phi[i] * phi[prime[j]] % mo;
}
sum_phi[i] = (sum_phi[i - 1] + phi[i]) % mo;
}
} struct HashTable {
static const int ppp = 2333333;
ll ref[ppp]; int val[ppp];
void clr() {memset(ref, -1, sizeof(ref)); ref[0] = val[0] = 0;} void add(ll pos, int nu) {
int tmp = pos % ppp;
while (ref[tmp] != -1) {++tmp; if (tmp == ppp) tmp = 0;}
ref[tmp] = pos; val[tmp] = nu;
} int query(ll pos) {
int tmp = pos % ppp;
while (ref[tmp] != pos) {++tmp; if (tmp == ppp) tmp = 0;}
return val[tmp];
}
} HT; #define maa(x) (x >= sqc ? num : ma[x]) ll ZY_shai(ll n) {
int cnt = 0, sqf = floor(sqrt(n)), sqc = ceil(sqrt(n)); HT.clr();
for (ll i = n, y; i >= 1; i = n / (y + 1)) {
J[++cnt] = (y = n / i);
HT.add(y, cnt);
G0[cnt] = y;
G1[cnt] = y % mo * ((y + 1) % mo) % mo * ni2 % mo;
pre[cnt] = 0;
} ll pp, delta;
for (int i = 1, p = prime[i]; i <= num; p = prime[++i]) {
pp = 1ll * p * p;
for (int j = cnt; j >= 1 && J[j] >= pp; --j) {
int id = HT.query(J[j] / p);
delta = max(G0[id] - (i - 1 - pre[id]), 1ll);
G0[j] -= delta;
delta = (G1[id] - ((sum_prime[min(i - 1, maa(J[id]))] - sum_prime[pre[id]] + mo) % mo) + mo) % mo;
G1[j] = (G1[j] - p * delta % mo + mo) % mo;
pre[j] = i;
}
} for (int j = cnt; j >= 1; --j) {
G0[j] = max(G0[j] - (num - pre[j]), 1ll);
G1[j] = (G1[j] - ((sum_prime[maa(J[j])] - sum_prime[pre[j]] + mo) % mo) + mo) % mo;
} ll ans = 0;
for (int i = 1; i < sqc; ++i) {
int id = HT.query(n / i);
ans = (ans + (1ll + G1[id] - G0[id] + mo) % mo * phi[i] % mo) % mo;
} ll prep = 0, sqrprep;
for (int j = 1; j <= cnt; ++j) F[j] = 1;
for (int i = num, p = prime[i]; i >= 1; p = prime[--i]) {
pp = 1ll * p * p;
for (int j = cnt; j >= 1 && J[j] >= pp; --j) {
ll J_j = J[j];
if (J_j < sqrprep) {
if (J_j >= prep) F[j] = (1 + sum_p[min(J_j, 1ll * sqf)] - sum_p[prep - 1] + mo) % mo;
else F[j] = 1;
}
int id = HT.query(J_j / p);
if (J[id] < sqrprep) {
if (J[id] >= prep) delta = (1 + sum_p[min(J[id], 1ll * sqf)] - sum_p[prep - 1] + mo) % mo;
else delta = 1;
} else
delta = F[id];
F[j] = (F[j] + (p - 1) * delta % mo) % mo; ll pic = pp;
while (J_j >= pic) {
id = HT.query(J_j / pic);
if (J[id] < sqrprep) {
if (J[id] >= prep) delta = (1 + sum_p[min(J[id], 1ll * sqf)] - sum_p[prep - 1] + mo) % mo;
else delta = 1;
} else
delta = F[id];
F[j] = (F[j] + pic / p * (p - 1) % mo * delta % mo) % mo;
pic *= p;
}
}
prep = p; sqrprep = pp;
} return ((ans + F[cnt]) % mo - sum_phi[sqc - 1] + mo) % mo;
} int main() {
ll top;
scanf("%lld\n", &top);
Euler_shai((int) sqrt(top));
printf("%lld\n", ZY_shai(top));
return 0;
}

【51Nod 1239】欧拉函数之和的更多相关文章

  1. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

  2. 51nod 1239 欧拉函数之和(杜教筛)

    [题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 [题目大意] 计算欧拉函数的前缀和 [题解] 我们 ...

  3. 51nod 1239 欧拉函数之和【欧拉函数+杜教筛】

    和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\phi(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\phi(i) ...

  4. 51 NOD 1239 欧拉函数之和(杜教筛)

    1239 欧拉函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究 ...

  5. 【51nod】1239 欧拉函数之和 杜教筛

    [题意]给定n,求Σφ(i),n<=10^10. [算法]杜教筛 [题解] 定义$s(n)=\sum_{i=1}^{n}\varphi(i)$ 杜教筛$\sum_{i=1}^{n}(\varph ...

  6. 【51nod】1239 欧拉函数之和

    题解 写完上一道就开始写这个,大体上就是代码改了改而已= = 好吧,再推一下式子! \(\sum_{i = 1}^{n}i = \sum_{i = 1}^{n}\sum_{d | i}\phi(d) ...

  7. 51Nod 1239 欧拉函数前n项和 杜教筛

    http://www.51nod.com/Challenge/Problem.html#!#problemId=1239 AC代码 #include <bits/stdc++.h> #de ...

  8. 51nod1239 欧拉函数之和

    跟1244差不多. //由于(x+1)没有先mod一下一直WA三个点我... //由于(x+1)没有先mod一下一直WA三个点我... #include<cstdio> #include& ...

  9. 欧拉函数之和(51nod 1239)

    对正整数n,欧拉函数是小于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler's totient function.φ函数.欧拉商数等.例如:φ(8) = 4(Phi( ...

  10. 【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛

    题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod. ...

随机推荐

  1. Codeforces 321E Ciel and Gondolas

    传送门:http://codeforces.com/problemset/problem/321/E [题解] 首先有一个$O(n^2k)$的dp. # include <stdio.h> ...

  2. 剖析 golang 的25个关键字

    剖析 golang 的25个关键字 基本在所有语言当中,关键字都是不允许用于自定义的,在Golang中有25个关键字,图示如下: 下面我们逐个解析这25个关键字. var && con ...

  3. 如何用js自己实现Animate运动函数

    js运动是我们学习js必不可少的研究部分,首先我们要知道js的运动其实仅仅是不断改变元素的某个属性值而已,比如不断改变一个绝对定位div的left值,那么你看到的效果就是这个div不断的向右边运动,那 ...

  4. perl 列出一个目录下的文件的大小

    use strict; use warnings; use Cwd; my $dir = 'd:\\www'; chdir($dir); opendir DIR, $dir or die " ...

  5. Linux中查看进程占用内存的情况【转】

    转自:http://hutaow.com/blog/2014/08/28/display-process-memory-in-linux/ Linux中查看某个进程占用内存的情况,执行如下命令即可,将 ...

  6. MVC使用Newtonsoft无需实体类,实现JSON数据返回给前端页面使用

    //引用using Newtonsoft.Json; using Newtonsoft.Json.Linq; public ActionResult JsonSample() { ResponseRe ...

  7. CNN中千奇百怪的卷积方式大汇总

    1.原始版本 最早的卷积方式还没有任何骚套路,那就也没什么好说的了. 见下图,原始的conv操作可以看做一个2D版本的无隐层神经网络. 附上一个卷积详细流程: [TensorFlow]tf.nn.co ...

  8. python--lxml

    ''' xpath语法: /:在子节点里面找 //:在子子孙孙里面找 //div:查找当前网页的所有div标签 //div/p:先查找所有div标签,再找div的子标签中的p标签 //div//p:现 ...

  9. powershell常用操作

    创建文件 New-Item -path $file_path -itemtype file 创建目录 New-Item -path $dir_path -type directory 删除目录 Rem ...

  10. 如何将json拼接在url后面当做地址栏参数?

    function param(data) { let url = '' for (var k in data) { let value = data[k] !== undefined ? data[k ...