【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=1221

【题目大意】

  每天对毛巾都有一定的需求ni,每天可以花f价值每条购买毛巾,
  当天用完的毛巾可以花费fA价值每条通过快消毒在A天之后得到一条可用的,
  也可以通过花费fB价值每条,通过慢消毒在B天之后获得可用的
  问满足每天需求所用的最小花费。

【题解】

  首先,我们建立X集合,表示每天用完之后需要消毒的毛巾,显然第i个点值为ni,
  建立Y集合表示每天需要的毛巾数量,第i个点为ni,
  对于X中每个点,向A天后对应Y中的每个点连流量为INF,费用为fA的边
  同时向B题后对应Y中的每个点连流量为INF,费用为fB的边
  源点向X中第i个点连ni流量0费用的边,Y中第i个点向汇点连ni流量0费用的边,
  对于购买新毛巾的操作,我们从源点向Y中每个点连INF流量f费用的边
  那么求该图的最小费用最大流就是答案。
  但是我们发现按照以上方式建图边数量非常的庞大。
  考虑建图优化,我们对于X中每个点i向i+1连边,
  而对于X向Y的连边,我们只要连到有效区间的起点即可,
  这样就等价于X中每个点,向A(B)天后对应Y中的每个点连流量为INF,费用为fA(fB)的边

  对于这道题,有一种效率更高的做法,链接:三分+贪心

【代码】

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int INF=0x7fffffff,N=2010;
int S,T,cnt,ans,d[N],q[N],from[N],g[N],flow;
bool in[N];
struct edge{int from,to,nxt,c,v;}e[100010];
void add(int u,int v,int w,int c){
e[++cnt].from=u;e[cnt].to=v;
e[cnt].nxt=g[u];g[u]=cnt;
e[cnt].c=c;e[cnt].v=w;
}void add_edge(int u,int v,int w,int c){add(u,v,w,c);add(v,u,0,-c);}
bool spfa(){
for(int i=S;i<=T;i++)d[i]=INF;
int t=0,w=1;d[S]=0;in[S]=1;q[0]=S;
while(t!=w){
int now=q[t];t++;if(t==T)t=0;
for(int i=g[now];i;i=e[i].nxt)
if(e[i].v&&d[e[i].to]>d[now]+e[i].c){
d[e[i].to]=d[now]+e[i].c;from[e[i].to]=i;
if(!in[e[i].to]){in[e[i].to]=1;q[w++]=e[i].to;if(w==T)w=0;}
}in[now]=0;
}return(d[T]!=INF);
}
void mcf(){
int x=INF;
for(int i=from[T];i;i=from[e[i].from])x=min(x,e[i].v);flow+=x;
for(int i=from[T];i;i=from[e[i].from]){e[i].v-=x;e[i^1].v+=x;ans+=e[i].c*x;}
}
int n,A,B,f,fA,fB;
void solve(){
S=0; T=2*n+1;
memset(g,0,sizeof(g));
memset(e,0,sizeof(e));
ans=flow=0; cnt=1;
for(int i=1;i<=n;i++){
int x;
scanf("%d",&x);
add_edge(S,i,x,0);
add_edge(i+n,T,x,0);
}for(int i=1;i<n;i++)add_edge(i,i+1,INF,0);
for(int i=1;i<=n;i++)add_edge(S,i+n,INF,f);
for(int i=1;i+A+1<=n;i++)add_edge(i,i+A+1+n,INF,fA);
for(int i=1;i+B+1<=n;i++)add_edge(i,i+B+1+n,INF,fB);
while(spfa())mcf();
printf("%d\n",ans);
}
int main(){
while(~scanf("%d%d%d%d%d%d",&n,&A,&B,&f,&fA,&fB))solve();
return 0;
}

BZOJ 1221 [HNOI2001] 软件开发(费用流)的更多相关文章

  1. bzoj 1221 [HNOI2001] 软件开发 费用流

    [HNOI2001] 软件开发 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1938  Solved: 1118[Submit][Status][D ...

  2. BZOJ 1221 [HNOI2001] 软件开发 费用流_建模

    题目描述:   某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供 ...

  3. BZOJ 1221: [HNOI2001] 软件开发(最小费用最大流)

    不知道为什么这么慢.... 费用流,拆点.... --------------------------------------------------------------------------- ...

  4. BZOJ 1221: [HNOI2001] 软件开发

    1221: [HNOI2001] 软件开发 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1428  Solved: 791[Submit][Stat ...

  5. BZOJ 3280: 小R的烦恼 & BZOJ 1221: [HNOI2001] 软件开发

    3280: 小R的烦恼 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 399  Solved: 200[Submit][Status][Discuss ...

  6. [BZOJ 1221] [HNOI2001] 软件开发 【费用流 || 三分】

    题目链接:BZOJ - 1221 题目分析 算法一:最小费用最大流 首先这是一道经典的网络流问题.每天建立两个节点,一个 i 表示使用毛巾,一个 i' 表示这天用过的毛巾. 然后 i 向 T 连 Ai ...

  7. BZOJ 1221: [HNOI2001] 软件开发【最小费用最大流】

    Description 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员 ...

  8. 【bzoj1221】[HNOI2001] 软件开发 费用流

    题目描述 某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消 ...

  9. BZOJ1221 [HNOI2001]软件开发 - 费用流

    题解 非常显然的费用流. 但是建图还是需要思考的QuQ 将每天分成两个节点 $x_{i,1}, x_{i,2} $, $ x_{i,1}$用于提供服务, $x_{i ,2}$ 用来从源点获得$nd[i ...

随机推荐

  1. Git彻底删除历史提交记录的方法

    有时候我们可能会遇到git提交错误的情况,比如提交了敏感的信息或者提交了错误的版本.这个时候我们想将提交到代码库的记录删除,我们要怎么做呢? 首先,我们需要找到我们需要回滚到的提交点的hash,可以使 ...

  2. Android开发中的各种尺度单位

    px 像素(pixel),表示屏幕上一个物理像素点 不建议直接使用 px 绘制UI,因为受像素密度的影响,以 px 为单位绘制的UI在不同手机上显示的实际大小会不同 dp   (用于定义控件大小) 密 ...

  3. 2017-2018-1 20179205《Linux内核原理与设计》第三周作业

    <Linux内核原理与分析>第三周作业 教材学习总结 第三章 进程管理 进程是Unix操作系统抽象概念中最基本的一种,是正在执行的程序代码的实时结果:线程,是在进程中活动的对象.而Linu ...

  4. Java 关于微信公众号支付总结附代码

    很多朋友第一次做微信支付的时候都有蒙,但当你完整的做一次就会发现其实并没有那么难 业务流程和应用场景官网有详细的说明:https://pay.weixin.qq.com/wiki/doc/api/js ...

  5. in_device结构和in_ifaddr结构

    /* ip配置块 */ struct in_device { /* 二层设备 */ struct net_device *dev; /* 引用计数 */ atomic_t refcnt; /* 是否正 ...

  6. python近期遇到的一些面试问题(二)

    1. 解释什么是栈溢出,在什么情况下可能出现. 栈溢出是由于C语言系列没有内置检查机制来确保复制到缓冲区的数据不得大于缓冲区的大小,因此当这个数据足够大的时候,将会溢出缓冲区的范围.在Python中, ...

  7. gradle问题总结与理解(一篇文章带你理解android studio 与gradle 的关系)

    前言:近日在网上找了个很不错的安卓二维码美化,由于下载的项目经常出问题,且不方便依赖使用,因此我想把它写个demo,并把源码发布到jcenter中,修改还是很顺利的,运行项目到手机也没问题,发布遇到了 ...

  8. OC 01 类和对象

    一.  定义OC的类和创建OC的对象 接下来就在OC中模拟现实生活中的情况,创建一辆车出来.首先要有一个车子类,然后再利用车子类创建车子对象 要描述OC中的类稍微麻烦一点,分2大步骤:类的声明.类的实 ...

  9. 网站服务器压力Web性能测试(1):Apache Bench:Apache自带服务器压力测试工具

    一个网站或者博客到底能够承受多大的用户访问量经常是我们在用VPS或者独立服务器搭建网站了最关心的问题,还有不少人喜欢对LNMP或者LAMP进行一些优化以便提高Web性能,而优化后到底有多大的效果,就需 ...

  10. leetcode 之Single Number(14)

    这题并不难,但需要注意细节. ListNode* addTwo(ListNode *l1, ListNode *l2) { ListNode dummy(-); ; ListNode *prev = ...