[2017 - 2018 ACL] 对话系统论文研究点整理
(论文编号及摘要见 [2017 ACL] 对话系统. [2018 ACL Long] 对话系统. 论文标题[]中最后的数字表示截止2019.1.21 google被引次数)
1. Domain Adaptation:
challenges:
(a) data shifts (syn -> live user data; stale -> current) cause distribution mismatch bet train and eval. -> 2017.1
(b) reestimate a global model from scratch each time a new domain with potentially new intents and slots is added. -> 2017.4
papers:
2017.1 adversarial training
[Adversarial Adaptation of Synthetic or Stale Data. Young-Bum Kim. 14]
2017.4 model(k + 1) = weighted_combination[model(1),...,model(k)]
[Domain Attention with an Ensemble of Experts. Young-Bum Kim. 17]
2. NLG:
challenges:
(a) integrate LM + Affect. -> 2017.2
(b) refering expression misunderstand -> 2017.5
(c) neural encoder-decoder models in open-domain: generate dull and generic responses. -> 2017.8
(d) multi-turn: lose relationships among utterances or important contextual information. -> 2017.11
(e) automatically evaluating the quality of dialogue responses for unstructured domains: biased and correlate very poorly with human judgements of response quality. -> 2017.12
(f) deep latent variable models used in open-domain: highly randomized, leading to uncontrollable generated responses. -> 2017.14
(g) does not employ knowledge to guide the generation -> tends to generate short, general, and meaningless responses. -> 2018.L1
(h) encoder-decoder dialog model is limited because it cannot output interpretable actions as in traditional systems, which hinders(阻碍) humans from understanding its generation process. -> 2018.L6
(i) translate natural language questions ->structured queries: further improvement hard. -> 2018.L8
papers:
2017.2 language model + affect info
[Affect-LM: A Neural Language Model for Customizable Affective Text Generation. 27]
2017.5 refering expression misunderstand correction - alg: contrastive focus
[Generating Contrastive Referring Expressions. 0]
2017.8 open-domain - Framework - conditional variaional autoencoders
pre: word-level decoder
cur: discourse-level encoder
[Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders. CMU. 69]
2017.11 muli-turn response selection - sequential matching network (SMN)
pre: concatenates utterances in context
matches a response with a highly abstract context vector
=> lose relationships among utterances or important contextual information
current: matches a response with each utterance on multiple levels of granularity
distills important matching information -> vector -> conv + pooling
accumulate vector -> RNN (models relationships among utterances)
final matching score (calcu with hid of rnn)
[Sequential Matching Network: A New Architecture for Multi-turn Response Selection in Retrieval-based Chatbots. 北航. 南开.微软. 48]
2017.12 auto eval Metric - ADEM
[Towards an Automatic Turing Test: Learning to Evaluate Dialogue Responses. 47]
2017.14 Framework - generation based on specific attributes(manually + auto detected) - both speakers diag states modeled -> personal features
[A Conditional Variational Framework for Dialog Generation. 20]
2017.16 Open-domain - Engine - generation (info retrieval + Seq2Seq) - AliMe chat
[AliMe Chat: A Sequence to Sequence and Rerank based Chatbot Engine. 27]
2018.L1 knowledge guide generation - neural knowledge diffusion (NKD) model - both fact + chi-chats
match the relevant facts for the input utterance + diffuse them to similar entities
[Knowledge Diffusion for Neural Dialogue Generation. 3]
2018.L6 encoder-decoder model - interprete- unsup discrete sent representation learning
DI-VAE + DI-VST - discover interpretable semantics via either auto encoding or context predicting
[Unsupervised Discrete Sentence Representation Learning for Interpretable Neural Dialog Generation. 8]
2018.L8 Framework - DialSQL + human intelligence
identify potential error of SQL -> ask for validation -> feedback to revise query
[ DialSQL: Dialogue Based Structured Query Generation. 4]
3. Task + Non-task hybrid
2017.3 whether to have a chat - dataset
[Chat Detection in Intelligent Assistant: Combining Task-oriented and Non-task-oriented Spoken Dialogue Systems. McGill University. Montreal. 7]
4. E2E
challenges:
(a) data-intensive -> 2017.6
(b) task - interact with KB -> pre: issuing a symbolic query to the KB to retrieve entries based on their attributes. -> 2017.13
disadvantages:
(1) such symbolic operations break the differentiability(可辨性) of the system
(2) prevent end-to-end training of neural dialogue agents
(c) only consider user semantic inputs and under-utilize other user info. -> 2018.L4
(b) incorporating knowledge bases. -> 2018.L7
papers:
2017.6 Framework - HCNs : RNN + knowledge(software/sys action templates) - reduce train data - opt (sup + RL) - bAbI dialog dataset - 2 commercial diag sys
[Hybrid Code Networks: practical and efficient end-to-end dialog control with supervised and reinforcement learning. Microsoft Research. 87]
2017.13 KB-InfoBot - E2E - task -multi-turn - interact with KB - present a agent
replacing symbolic queries -> induced "soft" posterior distribution over the KB
integrate soft retrival process + RL
[Towards End-to-End Reinforcement Learning of Dialogue Agents for Information Access. CMU. MS. 国立台北. 82]
2018.L4 multimodel info (sup + RL) - user adaptive - reduce diag length + improve success rate
[Sentiment Adaptive End-to-End Dialog Systems. 2]
2018.L7 Mem2Seq - first neural generative model: combines [ multi-hop attention over memories + idea of pointer network]
[Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Oriented Dialog Systems. UST.8]
5. NLU
challenges:
(a) no systematic comparison to analyze how to use context effectively. -> 2017.15
papers:
2017.7 identity discussion points + discourse relations
[Joint Modeling of Content and Discourse Relations in Dialogues. 7]
2017.15 context utiliztion eval -empirical study and compare models - variant: weights context vectors by context-query relevance
[How to Make Contexts More Useful? An Empirical Study to Context-Aware Neural Conversation Models. 18]
6. Dialogue state tracking
challenges:
(a) have difficulty scaling to larger, more complex dialogue domains. -> 2017.10
(1) Spoken Language Understanding models that require large amounts of annotated training data
(2) hand-crafted lexicons for capturing some of the linguistic variation in users' language.
(b) handling unknown slot values -> Pre: assume predefined candidate lists and thus are not designed to output unknown values. especially in E2E, SLU is absent. -> 2018.L10
papers:
2017.10 Framework - Neural Belief Tracking (NBT) - representation learning (compose pre-trained word vector -> utterances and context)
[Neural Belief Tracker: Data-Driven Dialogue State Tracking. 63]
2018.L9 Global-Locally Self-Attentive Dialogue State Tracker (GLAD)
global modules: shares parameters between estimators for different types (called slots) of dialogue states
local modules: learn slot-specific features
[Global-Locally Self-Attentive Encoder for Dialogue State Tracking. 0]
2018.L10 E2E + pointer nerwork (PtrNet)
[An End-to-end Approach for Handling Unknown Slot Values in Dialogue State Tracking. 2]
7. Framework
challenges:
(a) pipeline: introduces architectural complexity and fragility. -> 2018.L2
papers:
2018.L2 Seq2Seq + opt (sup / RL) - Task
design text spans named belief spans -> track dialogue believes -> allow task-oriented sys be modeled in Seq2Seq
Two Stage CopyNet instantiation -> reduce para, train time + better than pipeline on large dataset + OOV
[Sequicity: Simplifying Task-oriented Dialogue Systems with Single Sequence-to-Sequence Architectures. 新加坡国立. 复旦. 京东. 9]
8. RL
challenges:
(a) Training a task-completion dialogue agent via reinforcement learning (RL) is costly: requires many interactions with real users.
(b) use a user simulator: lacks the language complexity + biases
papers:
2018.L3 RL - policy learning - Deep Dyna-Q
first deep RL framework that integrates planning for task-completion dialogue policy learning
world model update with real user experience + agent opt using real and simulated experience
[Deep Dyna-Q: Integrating Planning for Task-Completion Dialogue Policy Learning. 3]
8. Chi-chat
challenges:
(a) lack specificity
(b) do not display a consistent personality. -> 2018.L5
papers:
2018.L5 add profile info[i. given + ii.partner] train to engage ii with personal topics -> used to predict profile
[Personalizing Dialogue Agents: I have a dog, do you have pets too? 31.]
9. Others:
challenges:
(a) open-ended dialogue state. -> 2017.9
papers:
2017.9 Symmetric Collaborative Dialogue - two agents to achieve a common goal
[Learning Symmetric Collaborative Dialogue Agents with Dynamic Knowledge Graph Embeddings. 21]
[2017 - 2018 ACL] 对话系统论文研究点整理的更多相关文章
- R语言重要数据集分析研究——需要整理分析阐明理念
1.R语言重要数据集分析研究需要整理分析阐明理念? 上一节讲了R语言作图,本节来讲讲当你拿到一个数据集的时候如何下手分析,数据分析的第一步,探索性数据分析. 统计量,即统计学里面关注的数据集的几个指标 ...
- MyEclips 2017/2018 (mac 版)安装与破解
MyEclips 2017/2018 (mac 版)安装与破解 现在在学J2EE,然后使用的工具就是 MyEclipse,现在就抛弃 Eclipse 了,我就不多说它俩的区别了,但是 MyEclips ...
- MyEclipse 2017/2018 安装与破解 图文教程
SSM 框架-02-MyEclipse 2017/2018 安装与破解 现在在学J2EE,然后使用的工具就是 MyEclipse,现在就抛弃 Eclipse 了,我就不多说它俩的区别了,但是 MyEc ...
- Hadoop是原Yahoo的Doug Cutting根据Google发布的学术论文研究而来
Hadoop是原Yahoo的Doug Cutting根据Google发布的学术论文研究而来.Doug Cutting给这个Project起了个名字,就叫Hadoop. Doug Cutting在Clo ...
- </2017><2018>
>>> Blog 随笔原始文档及源代码 -> github: https://github.com/StackLike/Python_Note >>> 统计信 ...
- 转:2018最全Redis面试题整理
Java面试----2018最全Redis面试题整理 1.什么是Redis? 答:Redis全称为:Remote Dictionary Server(远程数据服务),是一个基于内存的高性能key-va ...
- [2017 ACL] 对话系统
Long Papers [Domain adaptation ] 1. Adversarial Adaptation of Synthetic or Stale Data ( Cited by 14 ...
- [2018 ACL Short and System] 对话系统
Short Paper(s) 1. Task-oriented Dialogue System for Automatic Diagnosis. (Cited by 0) Zhongyu Wei, ...
- [2018 ACL Long] 对话系统
[NLG - E2E - knowledge guide generation] 1. Knowledge Diffusion for Neural Dialogue Generation ( Ci ...
随机推荐
- 阿里前端测试题--关于ES6中Promise函数的理解与应用
今天做了阿里前端的笔试题目,原题目是这样的 //实现mergePromise函数,把传进去的数组顺序先后执行,//并且把返回的数据先后放到数组data中 const timeout = ms => ...
- DQL-条件查询
二 :条件查询 语法:select 列表名 from 表名 where 筛选条件 例如: select salary from employees where salary> ...
- 工具 | Axure基础操作 No.1
Axure作为一款热门的原型设计工具,是产品汪必备的一个技能.对于我个人来说,虽然更加喜欢墨刀这种小清新并且易用的网页版轻量级工具. 我在这里进行一些简单操作的动图,方便和我一样刚入门的同学容易看得明 ...
- 协作开发中常用的Git命令小结
先提一下最基础的git命令用法: git clone 从远端克隆到本地仓库 git add . (注意add和. 之间有一个空格)将全部改动添加到暂存区 git checkout xxx 撤销更改 ...
- windows用交互式命令执行python程序
1.进入cmd命令 windows+r2.进入盘符,eg:E:3.使用dir命令查看当前文件夹下的所有目录4.使用绝对路径或者相对路径和cd命令直接进入想要到达的文件夹目录(或者使用cd命令一步一步达 ...
- Linux 运维工程师学习成长路线上要经历哪四个阶段?
之前曾看到一篇新闻,Linux之父建议大家找一份基于Linux和开源环境的工作.今天就来聊一聊我的想法,本人8年Linux运维一线经验,呆过很多互联网公司,从一线运维做到运维架构师一职,也见证了中国运 ...
- 解决IDEA打印到控制台的中文内容乱码
File-->Settings-->Editor-->File Encodings->将图中内容均设置为UTF-8--->点击+号选中自己的项目->Apply--& ...
- table表单制作个人简历
应用table表单,编程个人简历表单,同时运用了跨行rowspan和跨列colspan. <!DOCTYPE html> <html> <head> <met ...
- Flask的request和session是从哪里来的?
因为之前一直在项目中使用django, 所以在学习Flask的过程中, 难免对吧django和Flask进行对比, 这一次我发现Flask中的request和session并没有想象的那么简单, 所以 ...
- Invoice Helper
using System; using Microsoft.Xrm.Sdk; using Microsoft.Xrm.Sdk.Query; using Microsoft.Crm.Sdk.Messag ...