hdu 2586:题意:输入n个点的n-1条边的树,m组询问任意点 a b之间的最短距离

思路:LCA中的Tarjan算法,RMQ还不会。。

#include <stdio.h>
#include <iostream>
#include <string.h>
using namespace std;
const int N = ;
const int M = ; int head[N]; //树边邻接表的表头
int __head[N]; //保存询问的邻接表的表头
struct edge{ //保存边
int u,v,w,next;
}e[*N];
struct ask{ //保存询问
int u,v,lca,next;
}ea[M];
int dir[N]; //保存点到树根的距离
int fa[N]; //并查集,保存集合的代表元素
int ance[N]; //保存集合的组合,注意对象是集合而不是元素
bool vis[N]; //遍历时的标记数组 inline void add_edge(int u,int v,int w,int &k) //保存边
{
e[k].u = u; e[k].v = v; e[k].w = w;
e[k].next = head[u]; head[u] = k++;
u = u^v; v = u^v; u = u^v;
e[k].u = u; e[k].v = v; e[k].w = w;
e[k].next = head[u]; head[u] = k++;
} inline void add_ask(int u ,int v ,int &k) //保存询问
{
ea[k].u = u; ea[k].v = v; ea[k].lca = -;
ea[k].next = __head[u]; __head[u] = k++;
u = u^v; v = u^v; u = u^v; ///看上去深奥。。其实就是swap(u,v);
ea[k].u = u; ea[k].v = v; ea[k].lca = -;
ea[k].next = __head[u]; __head[u] = k++;
} int Find(int x)
{
return x == fa[x] ? x : fa[x] = Find(fa[x]);
}
void Union(int u ,int v)
{
fa[v] = fa[u]; //可写为 fa[Find(v)] = fa[u];
} void Tarjan(int u)
{
vis[u] = true;
ance[u] = fa[u] = u; //可写为 ance[Find(u)] = fa[u] = u;
for(int k=head[u]; k!=-; k=e[k].next)
if( !vis[e[k].v] )
{
int v = e[k].v , w = e[k].w;
dir[v] = dir[u] + w;
Tarjan(v);
Union(u,v);
ance[Find(u)] = u;
}
for(int k=__head[u]; k!=-; k=ea[k].next)
if( vis[ea[k].v] )
{
int v = ea[k].v;
ea[k].lca = ea[k^].lca = ance[Find(v)];
}
} int main()
{
int tcase;
scanf("%d",&tcase);
while(tcase--){
int n,q;
scanf("%d%d",&n,&q);
memset(head,-,sizeof(head));
memset(__head,-,sizeof(__head));
int tot = ;
for(int i=; i<n; i++) //建树
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add_edge(u,v,w,tot);
}
tot = ;
for(int i=; i<q; i++) //拆开保存询问
{
int u,v;
scanf("%d%d",&u,&v);
add_ask(u,v,tot);
}
memset(vis,,sizeof(vis));
dir[] = ;
Tarjan();
for(int i=; i<q; i++)
{
int s = i * , u = ea[s].u , v = ea[s].v , lca = ea[s].lca;
printf("%d\n",dir[u]+dir[v]-*dir[lca]);
}
} return ;
}

hdu 2874:和上题一样都是求两点之间的最短距离,但是有多棵树,所以存在不连通的情况(用father判断一下就OK),,然后华丽丽的 超内存,拿别人的代码也是MLE

#include <stdio.h>
#include <iostream>
#include <string.h>
using namespace std;
const int N = ;
const int M = ; int head[N];
int __head[N];
struct edge{
int u,v,w,next;
}e[*N];
struct ask{
int u,v,lca,next;
}ea[*M];
int dir[N];
int fa[N];
int ance[N];
bool vis[N]; inline void add_edge(int u,int v,int w,int &k) //保存边
{
e[k].u = u; e[k].v = v; e[k].w = w;
e[k].next = head[u]; head[u] = k++;
u = u^v; v = u^v; u = u^v;
e[k].u = u; e[k].v = v; e[k].w = w;
e[k].next = head[u]; head[u] = k++;
} inline void add_ask(int u ,int v ,int &k) //保存询问
{
ea[k].u = u; ea[k].v = v; ea[k].lca = -;
ea[k].next = __head[u]; __head[u] = k++;
u = u^v; v = u^v; u = u^v; ///看上去深奥。。其实就是swap(u,v);
ea[k].u = u; ea[k].v = v; ea[k].lca = -;
ea[k].next = __head[u]; __head[u] = k++;
} int Find(int x)
{
return x == fa[x] ? x : fa[x] = Find(fa[x]);
}
void Union(int u ,int v)
{
int x = Find(u);
int y = Find(v);
fa[x] = y;
} void Tarjan(int u)
{
vis[u] = true;
ance[u] = fa[u] = u; //可写为 ance[Find(u)] = fa[u] = u;
for(int k=head[u]; k!=-; k=e[k].next)
if( !vis[e[k].v] )
{
int v = e[k].v , w = e[k].w;
dir[v] = dir[u] + w;
Tarjan(v);
Union(u,v);
ance[Find(u)] = u; //可写为ance[u] = u; //甚至不要这个语句都行
}
for(int k=__head[u]; k!=-; k=ea[k].next)
if( vis[ea[k].v] )
{
int v = ea[k].v;
ea[k].lca = ea[k^].lca = ance[Find(v)];
}
} int main()
{
int k,n,q;
while(scanf("%d%d%d",&n,&k,&q)!=EOF){ memset(head,-,sizeof(head));
memset(__head,-,sizeof(__head));
int tot = ;
for(int i=; i<k; i++) //建树
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add_edge(u,v,w,tot);
}
tot = ;
for(int i=; i<q; i++) //拆开保存询问
{
int u,v;
scanf("%d%d",&u,&v);
add_ask(u,v,tot);
}
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++){ ///访问每个节点
if(!vis[i]){
dir[i]=;
Tarjan(i);
}
}
for(int i=; i<q; i++)
{
int s = i * , u = ea[s].u , v = ea[s].v , lca = ea[s].lca; ///s代表偶数边,奇偶只是方向不同罢了,所以取一个就行
if(fa[u]!=fa[v]) printf("Not connected\n"); ///父亲结点不同当然就不是同一棵子树了
else printf("%d\n",dir[u]+dir[v]-*dir[lca]);
}
} return ;
}

LCA离线算法Tarjan的模板的更多相关文章

  1. LCA离线算法Tarjan详解

    离线算法也就是需要先把所有查询给保存下来,最后一次输出结果. 离线算法是基于并查集实现的,首先就是初始化P[i] = i. 接下来对于每个点进行dfs: ①首先判断是否有与该点有关的查询,如果当前该点 ...

  2. 距离LCA离线算法Tarjan + dfs + 并查集

    距离B - Distance in the Tree 还是普通的LCA但是要求的是两个节点之间的距离,学到了一些 一开始我想用带权并查集进行优化,但是LCA合并的过程晚于离线计算的过程,所以路径长度会 ...

  3. HDU 2874 LCA离线算法 tarjan算法

    给出N个点,M条边.Q次询问 Q次询问每两点之间的最短距离 典型LCA 问题   Marjan算法解 #include "stdio.h" #include "strin ...

  4. POJ1986 DistanceQueries 最近公共祖先LCA 离线算法Tarjan

    这道题与之前那两道模板题不同的是,路径有了权值,而且边是双向的,root已经给出来了,就是1,(这个地方如果还按之前那样来计算入度是会出错的.数据里会出现多个root...数据地址可以在poj的dis ...

  5. Tarjan的LCA离线算法

    LCA(Least Common Ancestors)是指树结构中两个结点的最低的公共祖先.而LCA算法则是用于求两个结点的LCA.当只需要求一对结点的LCA时,我们很容易可以利用递归算法在O(n)的 ...

  6. LCA 离线的Tarjan算法 poj1330 hdu2586

    LCA问题有好几种做法,用到(tarjan)图拉算法的就有3种.具体可以看邝斌的博客.http://www.cnblogs.com/kuangbin/category/415390.html 几天的学 ...

  7. LCA(最近公共祖先)离线算法Tarjan+并查集

    本文来自:http://www.cnblogs.com/Findxiaoxun/p/3428516.html 写得很好,一看就懂了. 在这里就复制了一份. LCA问题: 给出一棵有根树T,对于任意两个 ...

  8. poj1330+hdu2586 LCA离线算法

    整整花了一天学习了LCA,tarjan的离线算法,就切了2个题. 第一题,给一棵树,一次查询,求LCA.2DFS+并查集,利用深度优先的特点,回溯的时候U和U的子孙的LCA是U,U和U的兄弟结点的子孙 ...

  9. Closest Common Ancestors---poj1470(LCA+离线算法)

    题目链接:http://poj.org/problem?id=1470 题意是给出一颗树,q个查询,每个查询都是求出u和v的LCA:    以下是寻找LCA的预处理过程: void LCA(u){ f ...

随机推荐

  1. [zhuan]使用uiautomator做UI测试

    http://blog.chengyunfeng.com/?p=504 在Android 4.1发布的时候包含了一种新的测试工具–uiautomator,uiautomator是用来做UI测试的.也就 ...

  2. 【贪心】【UVA10905】 Children's Game

    传送门 Description 给定n个正整数,求他们相连接后能形成的最大整数.例如:12,23这两个数能连接的最大数是2312,. Input 多组数据,每组数据中: 第一行为一个整数n 第二行有n ...

  3. 【DP】【P2340】奶牛会展

    传送门 Description 奶牛想证明它们是聪明而风趣的.为此,贝西筹备了一个奶牛博览会,她已经对N 头奶牛进行了面试,确定了每头奶牛的智商和情商. 贝西有权选择让哪些奶牛参加展览.由于负的智商或 ...

  4. SSH内存泄露及Spring Quartz问题

    版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明 http://www.blogbus.com/anoxia-logs/34360203.html 问题的起因: 为客户开发了一个系统权 ...

  5. [C#] 类型学习笔记二:详解对象之间的比较

    继上一篇对象类型后,这里我们一起探讨相等的判定. 相等判断有关的4个方法 CLR中,和相等有关系的方法有这么4种: (1) 最常见的 == 运算符 (2) Object的静态方法ReferenceEq ...

  6. springboot线程池@Async的使用和扩展

    我们常用ThreadPoolExecutor提供的线程池服务,springboot框架提供了@Async注解,帮助我们更方便的将业务逻辑提交到线程池中异步执行,今天我们就来实战体验这个线程池服务: 本 ...

  7. MyBatis框架的使用及源码分析(四) 解析Mapper接口映射xml文件

    在<MyBatis框架中Mapper映射配置的使用及原理解析(二) 配置篇 SqlSessionFactoryBuilder,XMLConfigBuilder> 一文中,我们知道mybat ...

  8. 【20161109】noip模拟赛

    1.Game [题目描述] 明明和亮亮在玩一个游戏.桌面上一行有n个格子,一些格子中放着棋子.明明和亮亮轮流选择如下方式中的一种移动棋子(图示中o表示棋子,*表示空着的格子): 1) 当一枚棋子的右边 ...

  9. php中比较好用的函数

    PHP中一个好用的函数parse_url,特别方便用来做信息抓取的分析,举例子如下: $url = "http://www.electrictoolbox.com/php-extract-d ...

  10. Windows Server 2008 R2英文版修改桌面主题(Win7主题)

    1:首先打开Server Manager(凡是不知道在那里开发均可像Win7一样在运行里面搜索) 2:然后在左边的树形菜单中选择:Feature 点击右边页面中的:Add Features 这时候会出 ...