Softmax回归模型是logistic回归模型在多分类问题上的推广,适用于多分类问题中,且类别之间互斥的场合。

Softmax将多个神经元的输出,映射到(0,1)区间内,可以看成是当前输出是属于各个分类的概率,从而来进行多分类。

假设有一个数组V,Vi表示V中的第i个元素,那么Vi元素的softmax值就是:

例如 V = [9,6,3,1] , 经过Softmax函数输出 V_Softmax = [0.950027342724 0.0472990762635 0.00235488234367 0.000318698668969],以下是转化程序:

# -*- coding: utf-8 -*-
import math V = [9,6,3,1] v1 = math.exp(9)
v2 = math.exp(6)
v3 = math.exp(3)
v4 = math.exp(1) v_sum = v1+v2+v3+v4 print v1/v_sum,v2/v_sum,v3/v_sum,v4/v_sum

可以看到,Softmax函数把输出映射成区间在(0,1)的值,并且做了归一化,所有元素的和累加起来等于1。可以直接当作概率对待,选取概率最大的分类作为预测的目标。

为什么是Softmax

其他很多函数也可以完成选取最大值,并归一化的功能,但是为什么现在神经网络中普遍采用Softmax作为回归分类函数呢。比如最简单的,把上例中的向量 V = [9,6,3,1]直接归一化,结果 v_norm = [0.5294, 0.3157, 0.1578, 0.0526], 单就分类来说,9对应的归一化值 0.5294也是最大的,分类也没错。

之所以选择Softmax,很大程度是因为Softmax中使用了指数,这样可以让大的值更大,让小的更小,增加了区分对比度,学习效率更高。第二个是因为softmax是连续可导的,消除了拐点,这个特性在机器学习的梯度下降法等地方非常必要。

神经网络中的Softmax激活函数的更多相关文章

  1. Pytorch_第九篇_神经网络中常用的激活函数

    神经网络中常用的激活函数 Introduce 理论上神经网络能够拟合任意线性函数,其中主要的一个因素是使用了非线性激活函数(因为如果每一层都是线性变换,那有啥用啊,始终能够拟合的都是线性函数啊).本文 ...

  2. 神经网络中的激活函数tanh sigmoid RELU softplus softmatx

    所谓激活函数,就是在神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端.常见的激活函数包括Sigmoid.TanHyperbolic(tanh).ReLu. softplus以及softma ...

  3. TensorFlow神经网络中的激活函数

    激活函数是人工神经网络的一个极其重要的特征.它决定一个神经元是否应该被激活,激活代表神经元接收的信息与给定的信息有关. 激活函数对输入信息进行非线性变换. 然后将变换后的输出信息作为输入信息传给下一层 ...

  4. 神经网络中的激活函数——加入一些非线性的激活函数,整个网络中就引入了非线性部分,sigmoid 和 tanh作为激活函数的话,一定要注意一定要对 input 进行归一话,但是 ReLU 并不需要输入归一化

    1 什么是激活函数? 激活函数,并不是去激活什么,而是指如何把“激活的神经元的特征”通过函数把特征保留并映射出来(保留特征,去除一些数据中是的冗余),这是神经网络能解决非线性问题关键. 目前知道的激活 ...

  5. 【深度学习篇】--神经网络中的池化层和CNN架构模型

    一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输 ...

  6. SELU︱在keras、tensorflow中使用SELU激活函数

    arXiv 上公开的一篇 NIPS 投稿论文<Self-Normalizing Neural Networks>引起了圈内极大的关注,它提出了缩放指数型线性单元(SELU)而引进了自归一化 ...

  7. 循环神经网络中BFTT的公式推导

    一.变量定义 此文是我学习BFTT算法的笔记,参考了雷明<机器学习与应用>中的BFTT算法推导,将该本书若干个推导串联起来,下列所有公式都是结合书和资料,手动在PPT上码的,很费时间,但是 ...

  8. 神经网络中的Heloo,World,基于MINST数据集的LeNet

    前言 最近刚开始接触机器学习,记录下目前的一些理解,以及看到的一些好文章mark一下 1.MINST数据集 MNIST 数据集来自美国国家标准与技术研究所, National Institute of ...

  9. 理解交叉熵(cross_entropy)作为损失函数在神经网络中的作用

    交叉熵的作用 通过神经网络解决多分类问题时,最常用的一种方式就是在最后一层设置n个输出节点,无论在浅层神经网络还是在CNN中都是如此,比如,在AlexNet中最后的输出层有1000个节点: 而即便是R ...

随机推荐

  1. PAT 天梯赛 L1-015. 跟奥巴马一起画方块 【水】

    题目链接 https://www.patest.cn/contests/gplt/L1-015 AC代码 #include <iostream> #include <cstdio&g ...

  2. leetcode每日一题——反转整数

    题目: 反转整数 难度: 简单 描述: 给定一个 32 位有符号整数,将整数中的数字进行反转. 解法: class Solution { public int reverse(int x) { //i ...

  3. Entity FrameWork 配置 之连接字符串隐藏或重用

    C/S项目中使用EF,默认回生成app.config文件夹,软件打包安装成功之后就回生成一个对应exe.config.里面会包含配置的一些信息. 这里介绍给大家一种隐藏连接字符串的方式. 代码如下: ...

  4. HDU4631(标程代码)

    /*将x从小到大排序,每次插入一个点,直接找比这个点的x大的第一个,然后从这个开始向两边找 ,找点的下标用多重容器实现*/ #include<stdio.h> #include<st ...

  5. python中定制类

    1.python中__str__和repr 如果要把一个类的实例变成 str,就需要实现特殊方法__str__(): class Person(object): def __init__(self, ...

  6. Linux静默安装Oracle

    打算在云服务器上装oracle服务,以前DBA美眉都是在图形化界面下安装,这次抓瞎了.赶紧上网查查,静默安装可以解决问题.于是乎赶紧开始部署,过程如下.安装环境:操作系统:CentOS 7内存:11G ...

  7. 《网络攻防》 MSF基础应用

    20145224陈颢文 <网络攻防>MSF基础应用 基础问题回答 用自己的话解释什么是exploit,payload,encode: exploit:攻击手段,是能使攻击武器(payloa ...

  8. mysql配置文件生效顺序

    安装完数据库 除了将my.cnf放在/etc/下放在其他地方也是可以的 cp /usr/share/mysql/my-default.cnf /etc/my.cnf 今天就看一下这些my.cnf是怎么 ...

  9. Linux下Wireshark的网络抓包使用方法

    Wireshark是世界上最流行的网络分析工具.这个强大的工具可以捕捉网络中的数据,并为用户提供关于网络和上层协议的各种信息.与很多其他网络工具一样,Wireshark也使用pcap network ...

  10. Java 获取路径的几种方法 - 转载

    1.获取当前类所在的“项目名路径” String rootPath = System.getProperty("user.dir"); 2.获取编译文件“jar包路径”(反射) S ...