SPOJ 7001 VLATTICE - Visible Lattice Points(莫比乌斯反演)
题目链接:http://www.spoj.com/problems/VLATTICE/
题意:求gcd(a, b, c) = 1 a,b,c <=N 的对数。
思路:我们令函数g(x)为gcd(a, b, c) = x的对数,那么这题就是要求g(1)。我们令f(x)为x | gcd(a, b, c)的对数,显然f(n) = sigma(n | d, g(d)) 。f(d) = (n/d) * (n/d) * (n/d),那么我们就可以用莫比乌斯反演公式了, g(n) = sigma(n | d, mu(d/n)f(d)) g(1) = mu(d)f(d) = mu(d)*(n/d)*(n/d)*(n/d)。考虑1位为0,2位为0的情况。
莫比乌斯反演的两种形式:
g(n) = sigma(d | n, f(d)) f(n) = sigma(d | n, mu(d) * g(n/d))
g(n) = sigma(n | d, f(d)) f(n) = sigma(n | d, mu(d / n) * g(d))
code:
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long LL;
const int MAXN = ;
bool check[MAXN];
int primes[MAXN];
int mu[MAXN]; void moblus()
{
memset(check, false, sizeof(check));
mu[] = ;
int cnt = ;
for (int i = ; i < MAXN; ++i) {
if (!check[i]) {
primes[cnt++] = i;
mu[i] = -;
}
for (int j = ; j < cnt; ++j) {
if (i * primes[j] > MAXN) break;
check[i * primes[j]] = true;
if (i % primes[j] == ) {
mu[i * primes[j]] = ;
break;
} else {
mu[i * primes[j]] = -mu[i];
}
}
}
} int main()
{
moblus();
int nCase;
scanf("%d", &nCase);
while (nCase--) {
int n;
scanf("%d", &n);
LL ans = ; // 001 010 100
for (int i = ; i <= n; ++i) {
ans += (LL)mu[i] * (n / i) * (n / i) * (n / i + );
}
printf("%lld\n", ans);
}
return ;
}
SPOJ 7001 VLATTICE - Visible Lattice Points(莫比乌斯反演)的更多相关文章
- SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)
Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...
- SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3
http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...
- SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演
这样的点分成三类 1 不含0,要求三个数的最大公约数为1 2 含一个0,两个非零数互质 3 含两个0,这样的数只有三个,可以讨论 针对 1情况 定义f[n]为所有满足三个数最大公约数为n的三元组数量 ...
- spoj 7001 Visible Lattice Points莫比乌斯反演
Visible Lattice Points Time Limit:7000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Su ...
- spoj7001 Visible Lattice Points 莫比乌斯反演+三维空间互质对数
/** 题目:Visible Lattice Points 链接:https://vjudge.net/contest/178455#problem/A 题意:一个n*n*n大小的三维空间.一侧为(0 ...
- SPOJ 7001 Visible Lattice Points (莫比乌斯反演)
题意:求一个正方体里面,有多少个顶点可以在(0,0,0)位置直接看到,而不被其它点阻挡.也就是说有多少个(x,y,z)组合,满足gcd(x,y,z)==1或有一个0,另外的两个未知数gcd为1 定义f ...
- SPOJ.Visible Lattice Points(莫比乌斯反演)
题目链接 /* http://www.spoj.com/problems/VLATTICE/ 题意:求一个n*n*n的晶体,有多少点可以在(0,0,0)处可以直接看到. 同BZOJ.2301 题目即要 ...
- SPOJ1007 VLATTICE - Visible Lattice Points
VLATTICE - Visible Lattice Points no tags Consider a N*N*N lattice. One corner is at (0,0,0) and th ...
- [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...
随机推荐
- javascript函数的基础功能
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...
- git忽略特殊文件
忽略特殊文件 有些时候,你必须把某些文件放到Git工作目录中,但又不能提交它们,比如保存了数据库密码的配置文件啦,等等,每次git status都会显示Untracked files ...,有强迫症 ...
- 编译时出现clock skew detected, your build may be incompeleted
错误原因为文件修改时间大于系统时间,这时候如果date输出系统时间,会发现这个时间是错误的.在nachos实习时多次出现这个错误,简单的方法尝试make多次直到有一次出现'nachos' is up ...
- linux下Oracle11g RAC搭建(六)
linux下Oracle11g RAC搭建(六) 五.校验安装前的环境 root身份下完毕解压grid.database安装包 [grid@node1 soft]$ su - Password: [r ...
- 初探swift语言的学习笔记(闭包-匿名函数或block块代码)
使用Block的地方很多,其中传值只是其中的一小部分,下面介绍Block在两个界面之间的传值: 先说一下思想: 首先,创建两个视图控制器,在第一个视图控制器中创建一个UILabel和一个UIButto ...
- JavaScript之面向对象学习三原型语法升级
1.到目前为止,我们是时候分析下前面的使用原型语法来定义对象有哪些不足的地方,代码如下: function Person(){ } Person.prototype.name="张三&quo ...
- NET,ASP.NET,C#,WinFrom之间的联系与区别
1:C#是编程语言(静态,强类型).类似中文.德文.英文这样. 2:.NET是一个平台(可承载多个编程语言,比如C# C++.net J# VB.Net), 但是都是运行在.net Fra ...
- Asp.Net MVC 控制器
原文链接:http://www.asp.net/learn/mvc/ 这篇教程探索了ASP.NET MVC控制器(controller).控制器动作(controller action)和动作结果(a ...
- 网络技术教程笔记(20)ISDN
广域网与接入网技术 广域网与接入网技术 常见接入技术--ISDN 综合业务数字网(Integrated Services Digital Network,ISDN)由电话综合数字网IDN演化而成,能够 ...
- Asp MVC 中处理JSON 日期类型
注:时间有点忙,直接copy 过来的,要查看原址: http://www.developer.com/net/dealing-with-json-dates-in-asp.net-mvc.html I ...