Udacity-Artificial Intelligence for Robotics 课程笔记
Lesson 1 Localization
蒙特卡洛机器人定位模型
sense 贝叶斯模型
move 全概率公式
localization练习
# The function localize takes the following arguments: # # colors: # 2D list, each entry either 'R' (for red cell) or 'G' (for green cell) # # measurements: # list of measurements taken by the robot, each entry either 'R' or 'G' # # motions: # list of actions taken by the robot, each entry of the form [dy,dx], # where dx refers to the change in the x-direction (positive meaning # movement to the right) and dy refers to the change in the y-direction # (positive meaning movement downward) # NOTE: the *first* coordinate is change in y; the *second* coordinate is # change in x # # sensor_right: # float between 0 and 1, giving the probability that any given # measurement is correct; the probability that the measurement is # incorrect is 1-sensor_right # # p_move: # float between 0 and 1, giving the probability that any given movement # command takes place; the probability that the movement command fails # (and the robot remains still) is 1-p_move; the robot will NOT overshoot # its destination in this exercise # # The function should RETURN (not just show or print) a 2D list (of the same # dimensions as colors) that gives the probabilities that the robot occupies # each cell in the world. # # Compute the probabilities by assuming the robot initially has a uniform # probability of being in any cell. # # Also assume that at each step, the robot: # 1) first makes a movement, # 2) then takes a measurement. # # Motion: # [0,0] - stay # [0,1] - right # [0,-1] - left # [1,0] - down # [-1,0] - up def sense(p,colors,measurement,sensor_right): q=[] for row in range(len(colors)): temp=[] for col in range(len(colors[0])): hit = (measurement == colors[row][col]) temp.append(p[row][col] * (hit * sensor_right + (1-hit) * (1-sensor_right))) q.append(temp) s=0 for row in range(len(q)): for col in range(len(q[0])): s += q[row][col] for row in range(len(p)): for col in range(len(q[0])): q[row][col] = q[row][col]/s return q def move(p, motion, p_move): q = [] for row in range(len(colors)): temp=[] for col in range(len(colors[0])): s = p_move * p[(row - motion[0]) % len(colors)][(col - motion[1]) % len(colors[0])] s += (1-p_move) * p[row][col] temp.append(s) q.append(temp) return q def localize(colors,measurements,motions,sensor_right,p_move): # initializes p to a uniform distribution over a grid of the same dimensions as colors pinit = 1.0 / float(len(colors)) / float(len(colors[0])) p = [[pinit for row in range(len(colors[0]))] for col in range(len(colors))] # >>> Insert your code here <<< for k in range(len(motions)): p = move(p, motions[k],p_move) p = sense(p,colors,measurements[k],sensor_right) return p def show(p): rows = ['[' + ','.join(map(lambda x: '{0:.5f}'.format(x),r)) + ']' for r in p] print '[' + ',\n '.join(rows) + ']' ############################################################# # For the following test case, your output should be # [[0.01105, 0.02464, 0.06799, 0.04472, 0.02465], # [0.00715, 0.01017, 0.08696, 0.07988, 0.00935], # [0.00739, 0.00894, 0.11272, 0.35350, 0.04065], # [0.00910, 0.00715, 0.01434, 0.04313, 0.03642]] # (within a tolerance of +/- 0.001 for each entry) colors = [['R','G','G','R','R'], ['R','R','G','R','R'], ['R','R','G','G','R'], ['R','R','R','R','R']] measurements = ['G','G','G','G','G'] motions = [[0,0],[0,1],[1,0],[1,0],[0,1]] p = localize(colors,measurements,motions,sensor_right = 0.7, p_move = 0.8) show(p) # displays your answer
simultaneous adj.同时的
Udacity-Artificial Intelligence for Robotics 课程笔记的更多相关文章
- (转)A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers
A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers. Updated 20 ...
- 学习笔记之人工智能(Artificial Intelligence)
人工智能 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD 人工智能(英语:Artif ...
- (转) Artificial intelligence, revealed
Artificial intelligence, revealed Yann LeCunJoaquin Quiñonero Candela It's 8:00 am on a Tuesday morn ...
- Andrew 机器学习课程笔记
Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep l ...
- EECS 649 Introduction to Artificial Intelligence
EECS 649 Introduction to Artificial IntelligenceExamElectronic Blackboard Submission Due: April 24, ...
- CS231n课程笔记翻译6:神经网络笔记 part1
译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Neural Nets notes 1,课程教师Andrej Karpathy授权翻译.本篇教程由杜客翻译完成,巩子嘉和堃堃进行校对修改.译文含 ...
- 【读书笔记与思考】Andrew 机器学习课程笔记
Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep l ...
- Artificial Intelligence in Finance
https://sigmoidal.io/real-applications-of-ai-in-finance/ Artificial Intelligence is taking the finan ...
- Artificial intelligence(AI)
ORM: https://github.com/sunkaixuan/SqlSugar 微软DEMO: https://github.com/Microsoft/BotBuilder 注册KEY:ht ...
随机推荐
- jquery跨域访问解决方案(转)
客户端“跨域访问”一直是一个头疼的问题,好在有jQuery帮忙,从jQuery-1.2以后跨域问题便迎刃而解.由于自己在项目中遇到跨域问题,借此机会对跨域问题来刨根问底,查阅了相关资料和自己的实践,算 ...
- nginx grok 正则错误的输出情况
nginx 配置: http { include mime.types; default_type application/octet-stream; log_format main '$http_h ...
- logstash 处理多行
2.2.2 多行事件编码: zjtest7-frontend:/usr/local/logstash-2.3.4/bin# ./plugin list | grep multi Ignoring ff ...
- 【二叉树->链表】二叉树结构转双向线性链表结构(先序遍历)
二叉树存储结构属于非线性链表结构,转化成线性链表结构,能简化操作和理解.然而由非线性转线性需要对整个树遍历一次,不同的遍历方式转化结果页不一样.下面以先序为例. 方法一: 递归法.递归遍历二叉树,因为 ...
- 数据结构--队列之C数组实现
队列是一种限定操作的线性表,它只能在表的一段插入,另外一段取出.所以也称为先进先出数据结构(FIFO---First In First Out) C代码如下: #include<stdio.h& ...
- 【ZOJ】3785 What day is that day? ——浅谈KMP在ACM竞赛中的暴力打表找规律中的应用
转载请声明出处:http://www.cnblogs.com/kevince/p/3887827.html ——By Kevince 首先声明一下,这里的规律指的是循环,即找到最小循环周期. 这 ...
- IOS5开发-http get/post调用mvc4 webapi互操作(图片上传)[转]
IOS5开发-http get/post调用mvc4 webapi互操作(图片上传) 目前最流行的跨平台交互是采用http协议通过JSON对象进行互操作.这种方式最简单,也很高效.webservi ...
- Invalid file permission Please regenerate them with cacaoadm create-keys --force
1.服务器重启之后,启动cacao报错,提示无效的文件权限. [root@ldapserver bin]# ./cacaoadm start Invalid file permission: [/ho ...
- C# Winform下载文件并显示进度条
private void btnDown_Click(object sender, EventArgs e) { DownloadFile("http://localhost:1928/We ...
- @property属性
1. 读写属性(readwrite/ readonly) 默认为readwrite,表示该属性既可以读取,也可以给该属性变量赋值:readonly则表示只能读取该属性变量. 2. 原子属性 (atom ...