Lesson 1 Localization

蒙特卡洛机器人定位模型

sense 贝叶斯模型

move 全概率公式

localization练习

 # The function localize takes the following arguments:
 #
 # colors:
 #        2D list, each entry either 'R' (for red cell) or 'G' (for green cell)
 #
 # measurements:
 #        list of measurements taken by the robot, each entry either 'R' or 'G'
 #
 # motions:
 #        list of actions taken by the robot, each entry of the form [dy,dx],
 #        where dx refers to the change in the x-direction (positive meaning
 #        movement to the right) and dy refers to the change in the y-direction
 #        (positive meaning movement downward)
 #        NOTE: the *first* coordinate is change in y; the *second* coordinate is
 #              change in x
 #
 # sensor_right:
 #        float between 0 and 1, giving the probability that any given
 #        measurement is correct; the probability that the measurement is
 #        incorrect is 1-sensor_right
 #
 # p_move:
 #        float between 0 and 1, giving the probability that any given movement
 #        command takes place; the probability that the movement command fails
 #        (and the robot remains still) is 1-p_move; the robot will NOT overshoot
 #        its destination in this exercise
 #
 # The function should RETURN (not just show or print) a 2D list (of the same
 # dimensions as colors) that gives the probabilities that the robot occupies
 # each cell in the world.
 #
 # Compute the probabilities by assuming the robot initially has a uniform
 # probability of being in any cell.
 #
 # Also assume that at each step, the robot:
 # 1) first makes a movement,
 # 2) then takes a measurement.
 #
 # Motion:
 #  [0,0] - stay
 #  [0,1] - right
 #  [0,-1] - left
 #  [1,0] - down
 #  [-1,0] - up
 def sense(p,colors,measurement,sensor_right):
     q=[]
     for row in range(len(colors)):
         temp=[]
         for col in range(len(colors[0])):
             hit = (measurement == colors[row][col])
             temp.append(p[row][col] * (hit * sensor_right + (1-hit) * (1-sensor_right)))
         q.append(temp)
     s=0
     for row in range(len(q)):
         for col in range(len(q[0])):
             s += q[row][col]
     for row in range(len(p)):
         for col in range(len(q[0])):
             q[row][col] = q[row][col]/s
     return q

 def move(p, motion, p_move):
     q = []
     for row in range(len(colors)):
         temp=[]
         for col in range(len(colors[0])):
             s = p_move * p[(row - motion[0]) % len(colors)][(col - motion[1]) % len(colors[0])]
             s += (1-p_move) * p[row][col]
             temp.append(s)
         q.append(temp)
     return q

 def localize(colors,measurements,motions,sensor_right,p_move):
     # initializes p to a uniform distribution over a grid of the same dimensions as colors
     pinit = 1.0 / float(len(colors)) / float(len(colors[0]))
     p = [[pinit for row in range(len(colors[0]))] for col in range(len(colors))]

     # >>> Insert your code here <<<

     for k in range(len(motions)):
         p = move(p, motions[k],p_move)
         p = sense(p,colors,measurements[k],sensor_right)

     return p

 def show(p):
     rows = ['[' + ','.join(map(lambda x: '{0:.5f}'.format(x),r)) + ']' for r in p]
     print '[' + ',\n '.join(rows) + ']'

 #############################################################
 # For the following test case, your output should be
 # [[0.01105, 0.02464, 0.06799, 0.04472, 0.02465],
 #  [0.00715, 0.01017, 0.08696, 0.07988, 0.00935],
 #  [0.00739, 0.00894, 0.11272, 0.35350, 0.04065],
 #  [0.00910, 0.00715, 0.01434, 0.04313, 0.03642]]
 # (within a tolerance of +/- 0.001 for each entry)

 colors = [['R','G','G','R','R'],
           ['R','R','G','R','R'],
           ['R','R','G','G','R'],
           ['R','R','R','R','R']]
 measurements = ['G','G','G','G','G']
 motions = [[0,0],[0,1],[1,0],[1,0],[0,1]]
 p = localize(colors,measurements,motions,sensor_right = 0.7, p_move = 0.8)
 show(p) # displays your answer

simultaneous adj.同时的

Udacity-Artificial Intelligence for Robotics 课程笔记的更多相关文章

  1. (转)A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers

    A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers. Updated 20 ...

  2. 学习笔记之人工智能(Artificial Intelligence)

    人工智能 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD 人工智能(英语:Artif ...

  3. (转) Artificial intelligence, revealed

    Artificial intelligence, revealed Yann LeCunJoaquin Quiñonero Candela It's 8:00 am on a Tuesday morn ...

  4. Andrew 机器学习课程笔记

    Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep l ...

  5. EECS 649 Introduction to Artificial Intelligence

    EECS 649 Introduction to Artificial IntelligenceExamElectronic Blackboard Submission Due: April 24, ...

  6. CS231n课程笔记翻译6:神经网络笔记 part1

    译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Neural Nets notes 1,课程教师Andrej Karpathy授权翻译.本篇教程由杜客翻译完成,巩子嘉和堃堃进行校对修改.译文含 ...

  7. 【读书笔记与思考】Andrew 机器学习课程笔记

    Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep l ...

  8. Artificial Intelligence in Finance

    https://sigmoidal.io/real-applications-of-ai-in-finance/ Artificial Intelligence is taking the finan ...

  9. Artificial intelligence(AI)

    ORM: https://github.com/sunkaixuan/SqlSugar 微软DEMO: https://github.com/Microsoft/BotBuilder 注册KEY:ht ...

随机推荐

  1. jquery跨域访问解决方案(转)

    客户端“跨域访问”一直是一个头疼的问题,好在有jQuery帮忙,从jQuery-1.2以后跨域问题便迎刃而解.由于自己在项目中遇到跨域问题,借此机会对跨域问题来刨根问底,查阅了相关资料和自己的实践,算 ...

  2. nginx grok 正则错误的输出情况

    nginx 配置: http { include mime.types; default_type application/octet-stream; log_format main '$http_h ...

  3. logstash 处理多行

    2.2.2 多行事件编码: zjtest7-frontend:/usr/local/logstash-2.3.4/bin# ./plugin list | grep multi Ignoring ff ...

  4. 【二叉树->链表】二叉树结构转双向线性链表结构(先序遍历)

    二叉树存储结构属于非线性链表结构,转化成线性链表结构,能简化操作和理解.然而由非线性转线性需要对整个树遍历一次,不同的遍历方式转化结果页不一样.下面以先序为例. 方法一: 递归法.递归遍历二叉树,因为 ...

  5. 数据结构--队列之C数组实现

    队列是一种限定操作的线性表,它只能在表的一段插入,另外一段取出.所以也称为先进先出数据结构(FIFO---First In First Out) C代码如下: #include<stdio.h& ...

  6. 【ZOJ】3785 What day is that day? ——浅谈KMP在ACM竞赛中的暴力打表找规律中的应用

    转载请声明出处:http://www.cnblogs.com/kevince/p/3887827.html    ——By Kevince 首先声明一下,这里的规律指的是循环,即找到最小循环周期. 这 ...

  7. IOS5开发-http get/post调用mvc4 webapi互操作(图片上传)[转]

    IOS5开发-http get/post调用mvc4 webapi互操作(图片上传)   目前最流行的跨平台交互是采用http协议通过JSON对象进行互操作.这种方式最简单,也很高效.webservi ...

  8. Invalid file permission Please regenerate them with cacaoadm create-keys --force

    1.服务器重启之后,启动cacao报错,提示无效的文件权限. [root@ldapserver bin]# ./cacaoadm start Invalid file permission: [/ho ...

  9. C# Winform下载文件并显示进度条

    private void btnDown_Click(object sender, EventArgs e) { DownloadFile("http://localhost:1928/We ...

  10. @property属性

    1. 读写属性(readwrite/ readonly) 默认为readwrite,表示该属性既可以读取,也可以给该属性变量赋值:readonly则表示只能读取该属性变量. 2. 原子属性 (atom ...