Lesson 1 Localization

蒙特卡洛机器人定位模型

sense 贝叶斯模型

move 全概率公式

localization练习

 # The function localize takes the following arguments:
 #
 # colors:
 #        2D list, each entry either 'R' (for red cell) or 'G' (for green cell)
 #
 # measurements:
 #        list of measurements taken by the robot, each entry either 'R' or 'G'
 #
 # motions:
 #        list of actions taken by the robot, each entry of the form [dy,dx],
 #        where dx refers to the change in the x-direction (positive meaning
 #        movement to the right) and dy refers to the change in the y-direction
 #        (positive meaning movement downward)
 #        NOTE: the *first* coordinate is change in y; the *second* coordinate is
 #              change in x
 #
 # sensor_right:
 #        float between 0 and 1, giving the probability that any given
 #        measurement is correct; the probability that the measurement is
 #        incorrect is 1-sensor_right
 #
 # p_move:
 #        float between 0 and 1, giving the probability that any given movement
 #        command takes place; the probability that the movement command fails
 #        (and the robot remains still) is 1-p_move; the robot will NOT overshoot
 #        its destination in this exercise
 #
 # The function should RETURN (not just show or print) a 2D list (of the same
 # dimensions as colors) that gives the probabilities that the robot occupies
 # each cell in the world.
 #
 # Compute the probabilities by assuming the robot initially has a uniform
 # probability of being in any cell.
 #
 # Also assume that at each step, the robot:
 # 1) first makes a movement,
 # 2) then takes a measurement.
 #
 # Motion:
 #  [0,0] - stay
 #  [0,1] - right
 #  [0,-1] - left
 #  [1,0] - down
 #  [-1,0] - up
 def sense(p,colors,measurement,sensor_right):
     q=[]
     for row in range(len(colors)):
         temp=[]
         for col in range(len(colors[0])):
             hit = (measurement == colors[row][col])
             temp.append(p[row][col] * (hit * sensor_right + (1-hit) * (1-sensor_right)))
         q.append(temp)
     s=0
     for row in range(len(q)):
         for col in range(len(q[0])):
             s += q[row][col]
     for row in range(len(p)):
         for col in range(len(q[0])):
             q[row][col] = q[row][col]/s
     return q

 def move(p, motion, p_move):
     q = []
     for row in range(len(colors)):
         temp=[]
         for col in range(len(colors[0])):
             s = p_move * p[(row - motion[0]) % len(colors)][(col - motion[1]) % len(colors[0])]
             s += (1-p_move) * p[row][col]
             temp.append(s)
         q.append(temp)
     return q

 def localize(colors,measurements,motions,sensor_right,p_move):
     # initializes p to a uniform distribution over a grid of the same dimensions as colors
     pinit = 1.0 / float(len(colors)) / float(len(colors[0]))
     p = [[pinit for row in range(len(colors[0]))] for col in range(len(colors))]

     # >>> Insert your code here <<<

     for k in range(len(motions)):
         p = move(p, motions[k],p_move)
         p = sense(p,colors,measurements[k],sensor_right)

     return p

 def show(p):
     rows = ['[' + ','.join(map(lambda x: '{0:.5f}'.format(x),r)) + ']' for r in p]
     print '[' + ',\n '.join(rows) + ']'

 #############################################################
 # For the following test case, your output should be
 # [[0.01105, 0.02464, 0.06799, 0.04472, 0.02465],
 #  [0.00715, 0.01017, 0.08696, 0.07988, 0.00935],
 #  [0.00739, 0.00894, 0.11272, 0.35350, 0.04065],
 #  [0.00910, 0.00715, 0.01434, 0.04313, 0.03642]]
 # (within a tolerance of +/- 0.001 for each entry)

 colors = [['R','G','G','R','R'],
           ['R','R','G','R','R'],
           ['R','R','G','G','R'],
           ['R','R','R','R','R']]
 measurements = ['G','G','G','G','G']
 motions = [[0,0],[0,1],[1,0],[1,0],[0,1]]
 p = localize(colors,measurements,motions,sensor_right = 0.7, p_move = 0.8)
 show(p) # displays your answer

simultaneous adj.同时的

Udacity-Artificial Intelligence for Robotics 课程笔记的更多相关文章

  1. (转)A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers

    A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers. Updated 20 ...

  2. 学习笔记之人工智能(Artificial Intelligence)

    人工智能 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD 人工智能(英语:Artif ...

  3. (转) Artificial intelligence, revealed

    Artificial intelligence, revealed Yann LeCunJoaquin Quiñonero Candela It's 8:00 am on a Tuesday morn ...

  4. Andrew 机器学习课程笔记

    Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep l ...

  5. EECS 649 Introduction to Artificial Intelligence

    EECS 649 Introduction to Artificial IntelligenceExamElectronic Blackboard Submission Due: April 24, ...

  6. CS231n课程笔记翻译6:神经网络笔记 part1

    译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Neural Nets notes 1,课程教师Andrej Karpathy授权翻译.本篇教程由杜客翻译完成,巩子嘉和堃堃进行校对修改.译文含 ...

  7. 【读书笔记与思考】Andrew 机器学习课程笔记

    Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep l ...

  8. Artificial Intelligence in Finance

    https://sigmoidal.io/real-applications-of-ai-in-finance/ Artificial Intelligence is taking the finan ...

  9. Artificial intelligence(AI)

    ORM: https://github.com/sunkaixuan/SqlSugar 微软DEMO: https://github.com/Microsoft/BotBuilder 注册KEY:ht ...

随机推荐

  1. glusterFS的缓存测试

    众所周知,glusterFS在客户端有缓存,缓存目的在于提高读性能.那么多个客户端同时对文件进行读写,会不会存在client缓存与server文件不一致的情况?比如client A和client B读 ...

  2. 1002 Fire Net

    用递归实现各种情况的枚举,可以看做是考察DPS的简单实现. #include <stdio.h> ][]; int place(int x,int y){ int i; ;i--){ ) ...

  3. QT5删除隐藏目录+隐藏文件

    1.功能需求 删除一个目录(包括目录本身),同时删除该目录中所有文件及目录(含隐藏的) 2.遇到的问题 qt5中已经有了递归删除目录的函数--->bool QDir::removeRecursi ...

  4. SQL Server 对表的 12 种一般性操作

    01. 创建 create table Strings(ID int);    go 02. 为表添加列 alter table Strings    add String nvarchar(32); ...

  5. Thinking in C++: 第1章 为什么C++会成功(改进了C的缺点,可复用C的知识与库,执行效率相当)

    本文内容摘抄自C++经典书籍:<Thinking in C++>   操作概念:OOP程序像什么 我们已经知道,用C 语言编写的过程程序就是一些数据定义和函数调用.要理解这种程序的含义,程 ...

  6. C语言运算符的优先级

    熟悉C语言的同学都知道,C语言众多的运算符及繁琐难记的优先级总是搞得我们这些C初学者头大.那么本文就 对C语言中所有的运算符进行汇总,并对其优先级进行一定的介绍. 这里虽然对所有C运算符的优先级进行了 ...

  7. windows2003 64位注册码 序列号 激活码

    Windows 2003 R2 64bit Enterprise VOL Edition 企业版 MR78C-GF2CY-KC864-DTG74-VMT73 VPT7T-77D38-KWVW2-2G3 ...

  8. 《Java解惑》书摘

    例子1:关于char数组的输出 System.out.println("H" + "a");//输出:Ha System.out.println('H' + ' ...

  9. hdu 5595 GTW likes math(暴力枚举查询)

    思路:直接暴力枚举区间[l,r]的整数值,然后max和min就可以了. AC代码: #pragma comment(linker, "/STACK:1024000000,1024000000 ...

  10. c#中(int)、int.Parse()、int.TryParse、Convert.ToInt32的区别

    本文来自:http://blog.csdn.net/tangjunping/article/details/5443337 以前经常为这几种数据类型转换方式而迷茫,这次为了彻底搞清它们之间的区别和优缺 ...