Udacity-Artificial Intelligence for Robotics 课程笔记
Lesson 1 Localization
蒙特卡洛机器人定位模型
sense 贝叶斯模型
move 全概率公式
localization练习
# The function localize takes the following arguments:
#
# colors:
# 2D list, each entry either 'R' (for red cell) or 'G' (for green cell)
#
# measurements:
# list of measurements taken by the robot, each entry either 'R' or 'G'
#
# motions:
# list of actions taken by the robot, each entry of the form [dy,dx],
# where dx refers to the change in the x-direction (positive meaning
# movement to the right) and dy refers to the change in the y-direction
# (positive meaning movement downward)
# NOTE: the *first* coordinate is change in y; the *second* coordinate is
# change in x
#
# sensor_right:
# float between 0 and 1, giving the probability that any given
# measurement is correct; the probability that the measurement is
# incorrect is 1-sensor_right
#
# p_move:
# float between 0 and 1, giving the probability that any given movement
# command takes place; the probability that the movement command fails
# (and the robot remains still) is 1-p_move; the robot will NOT overshoot
# its destination in this exercise
#
# The function should RETURN (not just show or print) a 2D list (of the same
# dimensions as colors) that gives the probabilities that the robot occupies
# each cell in the world.
#
# Compute the probabilities by assuming the robot initially has a uniform
# probability of being in any cell.
#
# Also assume that at each step, the robot:
# 1) first makes a movement,
# 2) then takes a measurement.
#
# Motion:
# [0,0] - stay
# [0,1] - right
# [0,-1] - left
# [1,0] - down
# [-1,0] - up
def sense(p,colors,measurement,sensor_right):
q=[]
for row in range(len(colors)):
temp=[]
for col in range(len(colors[0])):
hit = (measurement == colors[row][col])
temp.append(p[row][col] * (hit * sensor_right + (1-hit) * (1-sensor_right)))
q.append(temp)
s=0
for row in range(len(q)):
for col in range(len(q[0])):
s += q[row][col]
for row in range(len(p)):
for col in range(len(q[0])):
q[row][col] = q[row][col]/s
return q
def move(p, motion, p_move):
q = []
for row in range(len(colors)):
temp=[]
for col in range(len(colors[0])):
s = p_move * p[(row - motion[0]) % len(colors)][(col - motion[1]) % len(colors[0])]
s += (1-p_move) * p[row][col]
temp.append(s)
q.append(temp)
return q
def localize(colors,measurements,motions,sensor_right,p_move):
# initializes p to a uniform distribution over a grid of the same dimensions as colors
pinit = 1.0 / float(len(colors)) / float(len(colors[0]))
p = [[pinit for row in range(len(colors[0]))] for col in range(len(colors))]
# >>> Insert your code here <<<
for k in range(len(motions)):
p = move(p, motions[k],p_move)
p = sense(p,colors,measurements[k],sensor_right)
return p
def show(p):
rows = ['[' + ','.join(map(lambda x: '{0:.5f}'.format(x),r)) + ']' for r in p]
print '[' + ',\n '.join(rows) + ']'
#############################################################
# For the following test case, your output should be
# [[0.01105, 0.02464, 0.06799, 0.04472, 0.02465],
# [0.00715, 0.01017, 0.08696, 0.07988, 0.00935],
# [0.00739, 0.00894, 0.11272, 0.35350, 0.04065],
# [0.00910, 0.00715, 0.01434, 0.04313, 0.03642]]
# (within a tolerance of +/- 0.001 for each entry)
colors = [['R','G','G','R','R'],
['R','R','G','R','R'],
['R','R','G','G','R'],
['R','R','R','R','R']]
measurements = ['G','G','G','G','G']
motions = [[0,0],[0,1],[1,0],[1,0],[0,1]]
p = localize(colors,measurements,motions,sensor_right = 0.7, p_move = 0.8)
show(p) # displays your answer
simultaneous adj.同时的
Udacity-Artificial Intelligence for Robotics 课程笔记的更多相关文章
- (转)A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers
A curated list of Artificial Intelligence (AI) courses, books, video lectures and papers. Updated 20 ...
- 学习笔记之人工智能(Artificial Intelligence)
人工智能 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E6%99%BA%E8%83%BD 人工智能(英语:Artif ...
- (转) Artificial intelligence, revealed
Artificial intelligence, revealed Yann LeCunJoaquin Quiñonero Candela It's 8:00 am on a Tuesday morn ...
- Andrew 机器学习课程笔记
Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep l ...
- EECS 649 Introduction to Artificial Intelligence
EECS 649 Introduction to Artificial IntelligenceExamElectronic Blackboard Submission Due: April 24, ...
- CS231n课程笔记翻译6:神经网络笔记 part1
译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Neural Nets notes 1,课程教师Andrej Karpathy授权翻译.本篇教程由杜客翻译完成,巩子嘉和堃堃进行校对修改.译文含 ...
- 【读书笔记与思考】Andrew 机器学习课程笔记
Andrew 机器学习课程笔记 完成 Andrew 的课程结束至今已有一段时间,课程介绍深入浅出,很好的解释了模型的基本原理以及应用.在我看来这是个很好的入门视频,他老人家现在又出了一门 deep l ...
- Artificial Intelligence in Finance
https://sigmoidal.io/real-applications-of-ai-in-finance/ Artificial Intelligence is taking the finan ...
- Artificial intelligence(AI)
ORM: https://github.com/sunkaixuan/SqlSugar 微软DEMO: https://github.com/Microsoft/BotBuilder 注册KEY:ht ...
随机推荐
- 恶补ASP.NET基础【1】枚举和结构
有时我们希望变量提取的是一个固定集合中的值,此时就可以用枚举类型, 例: enum OpenMode : byte { 新增=, 编辑=, 查看= } class Program { static v ...
- 100个linux常用命令
1,echo “aa” > test.txt 和 echo “bb” >> test.txt //>将原文件清空,并且内容写入到文件中,>>将内容放到文件的尾部 2 ...
- linux之SQL语句简明教程---CREATE TABLE
表格是数据库中储存资料的基本架构.在绝大部份的情况下,数据库厂商不可能知道您需要如何储存您的资料,所以通常您会需要自己在数据库中建立表格.虽然许多数据库工具可以让您在不需用到 SQL 的情况下建立表格 ...
- jQuery提交form表单
<form id="search_form" name="search_form" method="post"> <inp ...
- Matlab lugui
function [L,U,pv,qv] = lugui(A,pivotstrat) %LUGUI Gaussian elimination demonstration. % % LUGUI(A) s ...
- Hadoop基础
Hadoop组成 包括两个核心组成:HDFS:分布式文件系统,存储海量的数据MapReduce:并行处理框架,实现任务分解和调度 搭建大型数据仓库,PB级数据的存储.处理.分析.统计等业务(搜索引擎. ...
- OS Kernel Parameter.semopm
安装Oracle11g内核参数semopm未校验通过,点击Fix&Check Again后,会提示执行修改脚本,在/tmp/CVU_11.2.0.1.0_oracle下,找到并执行该脚本run ...
- ImageButton与Button
1.Button控件 Butotn控件,主要用来实现一些命令操作,通过注册监听事件来实现.首先需要在xml文档中放入一个button按钮. <Button android:id="@+ ...
- 10Cookie
<!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...
- Oracle 归档路径
Oracle 的归档路径设置,这里主要按照官网说明记录 LOG_ARCHIVE_DEST_n 与 LOG_ARCHIVE_DEST_STATE_n 这两个参数. 我使用的数据库是11.2版本,这两个参 ...