线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子.

 #include<bits/stdc++.h>

 using namespace std;

 #define M(l, r) (((l) + (r)) >> 1)

 typedef long long ll;

 const int maxn = ;

 int N, V[maxn], lc[maxn], rc[maxn], n = ;

 struct Node *null, *pt;
struct Node {
Node *l, *r;
int cnt;
Node() : cnt() {
l = r = null;
}
inline void update() {
cnt = l->cnt + r->cnt;
}
void* operator new(size_t) {
return pt++;
}
} pool[maxn * ], *root[maxn]; void init() {
pt = pool;
null = new(Node);
null->l = null->r = null;
} int v;
void build(Node* t, int l, int r) {
t->cnt = ;
if(r > l) {
int m = M(l, r);
v <= m ? build(t->l = new(Node), l, m) : build(t->r = new(Node), m + , r);
}
} ll cnt0, cnt1, ans = ; Node* merge(Node* L, Node* R) {
if(L == null) return R;
if(R == null) return L;
cnt0 += ll(L->r->cnt) * R->l->cnt;
cnt1 += ll(L->l->cnt) * R->r->cnt;
L->l = merge(L->l, R->l);
L->r = merge(L->r, R->r);
L->update();
return L;
} void read(int x) {
scanf("%d", V + x);
if(!V[x]) {
read(lc[x] = n++); read(rc[x] = n++);
}
} void work(int x) {
if(!~x) return;
work(lc[x]); work(rc[x]);
if(!V[x]) {
cnt0 = cnt1 = ;
if(!~lc[x])
root[x] = root[rc[x]];
else if(!~rc[x])
root[x] = root[lc[x]];
else
root[x] = merge(root[lc[x]], root[rc[x]]);
ans += min(cnt0, cnt1);
}
} int main() { init();
memset(lc, -, sizeof lc); memset(rc, -, sizeof rc);
scanf("%d", &N);
n = ; read(n++); for(int i = ; i < n; i++) if(V[i]) {
v = V[i];
build(root[i] = new(Node), , N);
}
work();
cout << ans << "\n"; return ;
}

2212: [Poi2011]Tree Rotations

Time Limit: 20 Sec  Memory Limit: 259 MB
Submit: 548  Solved: 195
[Submit][Status][Discuss]

Description

Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch - the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves' labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An).  The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar's tree that can be obtained by rotations.

现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。

Input

In the first line of the standard input there is a single integer (2< = N < = 200000) that denotes the number of leaves in Byteasar's tree. Next, the description of the tree follows. The tree is defined recursively: if there is a leaf labelled with ()(1<=P<=N) at the end of the trunk (i.e., the branch from which the tree stems), then the tree's description consists of a single line containing a single integer , if there is a bifurcation at the end of the trunk, then the tree's description consists of three parts: the first line holds a single number , then the description of the left subtree follows (as if the left branch forking out of the bifurcation was its trunk), and finally the description of the right subtree follows (as if the right branch forking out of the bifurcation was its trunk).

第一行n
下面每行,一个数x
如果x==0,表示这个节点非叶子节点,递归地向下读入其左孩子和右孩子的信息,
如果x!=0,表示这个节点是叶子节点,权值为x

1<=n<=200000

Output

In the first and only line of the standard output a single integer is to be printed: the minimum number of inversions in the corona of the input tree that can be obtained by a sequence of rotations.

一行,最少逆序对个数

Sample Input

3
0
0
3
1
2

Sample Output

1

HINT

 

Source

BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )的更多相关文章

  1. BZOJ.2212.[POI2011]Tree Rotations(线段树合并)

    题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...

  2. Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并

    题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...

  3. bzoj 2212 : [Poi2011]Tree Rotations (线段树合并)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2212 思路:用线段树合并求出交换左右儿子之前之后逆序对的数量,如果数量变小则交换. 实现 ...

  4. 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并

    [BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...

  5. [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】

    题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...

  6. BZOJ 2212 [Poi2011]Tree Rotations(线段树合并)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2212 [题目大意] 给出一棵二叉树,每个叶节点上有一个权值,现在可以任意交换左右儿子, ...

  7. bzoj 2212: [Poi2011]Tree Rotations

    Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...

  8. bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并

    Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...

  9. bzoj2212[Poi2011]Tree Rotations [线段树合并]

    题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...

随机推荐

  1. SharePoint代码段设计

    参考文章: 1. SharePoint 2013设计管理器代码段 https://msdn.microsoft.com/zh-cn/library/jj822367 2. 如何在SharePoint中 ...

  2. 关于RadUpload上传问题总结

    最近在开发上传控件,使用RadUpload上传大附件 发现了几个小问题,总结后分享给大家: 1.IE6浏览器下文件的路径显示的是物理路径,需要进行转换 2.IIS7.0 配置时要选择经典模式 3.we ...

  3. Javah生成JNI头文件

    首先确保java的环境变量配置好了. 1:打开cmd 进入doc命令窗口: 进入class所在目录,我的class是在F:\summerVacation\ndkhelloworld\bin\class ...

  4. select into from 和 insert into select 的用法和区别(转)

    转自:http://www.studyofnet.com/news/182.html select into from 和 insert into select都是用来复制表,两者的主要区别为: se ...

  5. Single Number i and ii

    Single Number Given an array of integers, every element appears twice except for one. Find that sing ...

  6. HTML5 总结-拖放-3

    HTML5 拖放 拖放(Drag 和 drop)是 HTML5 标准的组成部分. 拖放 拖放是一种常见的特性,即抓取对象以后拖到另一个位置. 在 HTML5 中,拖放是标准的一部分,任何元素都能够拖放 ...

  7. jQuery(二)

    table 全选.反选.清除 <!DOCTYPE html> <html lang="en"> <head> <meta charset= ...

  8. C# Thread Programming Start

    引言 1.理解多线程 2. 线程异步与线程同步 3.创建多线程应用程序 3.1通过System.Threading命名空间的类构建 3.1.1异步调用线程 3.1.2并发问题 3.1.3线程同步 3. ...

  9. linux分区工具fdisk的使用

    fdisk是linux下的一块分区工具,使用简单方便,由于是对系统进行修改,需要root权限. 常用参数如下: fdisk  -l : 列出所有的硬盘信息 直接传入设备名称可进入对该硬盘分区.例如,f ...

  10. C陷阱与缺陷(三)

    第三章 语义陷阱 3.1 指针与数组 C语言中只有一维数组,而且数组的大小必须字编译期就作为一个常数确定下来.数组中的元素可以是另外一个数组.任何一个数组下标运算都等同于一个对应的指针运算.int a ...