BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )
线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子.
#include<bits/stdc++.h> using namespace std; #define M(l, r) (((l) + (r)) >> 1) typedef long long ll; const int maxn = ; int N, V[maxn], lc[maxn], rc[maxn], n = ; struct Node *null, *pt;
struct Node {
Node *l, *r;
int cnt;
Node() : cnt() {
l = r = null;
}
inline void update() {
cnt = l->cnt + r->cnt;
}
void* operator new(size_t) {
return pt++;
}
} pool[maxn * ], *root[maxn]; void init() {
pt = pool;
null = new(Node);
null->l = null->r = null;
} int v;
void build(Node* t, int l, int r) {
t->cnt = ;
if(r > l) {
int m = M(l, r);
v <= m ? build(t->l = new(Node), l, m) : build(t->r = new(Node), m + , r);
}
} ll cnt0, cnt1, ans = ; Node* merge(Node* L, Node* R) {
if(L == null) return R;
if(R == null) return L;
cnt0 += ll(L->r->cnt) * R->l->cnt;
cnt1 += ll(L->l->cnt) * R->r->cnt;
L->l = merge(L->l, R->l);
L->r = merge(L->r, R->r);
L->update();
return L;
} void read(int x) {
scanf("%d", V + x);
if(!V[x]) {
read(lc[x] = n++); read(rc[x] = n++);
}
} void work(int x) {
if(!~x) return;
work(lc[x]); work(rc[x]);
if(!V[x]) {
cnt0 = cnt1 = ;
if(!~lc[x])
root[x] = root[rc[x]];
else if(!~rc[x])
root[x] = root[lc[x]];
else
root[x] = merge(root[lc[x]], root[rc[x]]);
ans += min(cnt0, cnt1);
}
} int main() { init();
memset(lc, -, sizeof lc); memset(rc, -, sizeof rc);
scanf("%d", &N);
n = ; read(n++); for(int i = ; i < n; i++) if(V[i]) {
v = V[i];
build(root[i] = new(Node), , N);
}
work();
cout << ans << "\n"; return ;
}
2212: [Poi2011]Tree Rotations
Time Limit: 20 Sec Memory Limit: 259 MB
Submit: 548 Solved: 195
[Submit][Status][Discuss]
Description
Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch - the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves' labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An). The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar's tree that can be obtained by rotations.
现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。
Input
In the first line of the standard input there is a single integer (2< = N < = 200000) that denotes the number of leaves in Byteasar's tree. Next, the description of the tree follows. The tree is defined recursively: if there is a leaf labelled with ()(1<=P<=N) at the end of the trunk (i.e., the branch from which the tree stems), then the tree's description consists of a single line containing a single integer , if there is a bifurcation at the end of the trunk, then the tree's description consists of three parts: the first line holds a single number , then the description of the left subtree follows (as if the left branch forking out of the bifurcation was its trunk), and finally the description of the right subtree follows (as if the right branch forking out of the bifurcation was its trunk).
第一行n
下面每行,一个数x
如果x==0,表示这个节点非叶子节点,递归地向下读入其左孩子和右孩子的信息,
如果x!=0,表示这个节点是叶子节点,权值为x
1<=n<=200000
Output
In the first and only line of the standard output a single integer is to be printed: the minimum number of inversions in the corona of the input tree that can be obtained by a sequence of rotations.
一行,最少逆序对个数
Sample Input
0
0
3
1
2
Sample Output
HINT
Source
BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )的更多相关文章
- BZOJ.2212.[POI2011]Tree Rotations(线段树合并)
题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...
- Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并
题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...
- bzoj 2212 : [Poi2011]Tree Rotations (线段树合并)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2212 思路:用线段树合并求出交换左右儿子之前之后逆序对的数量,如果数量变小则交换. 实现 ...
- 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并
[BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...
- [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】
题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...
- BZOJ 2212 [Poi2011]Tree Rotations(线段树合并)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2212 [题目大意] 给出一棵二叉树,每个叶节点上有一个权值,现在可以任意交换左右儿子, ...
- bzoj 2212: [Poi2011]Tree Rotations
Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...
- bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并
Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...
- bzoj2212[Poi2011]Tree Rotations [线段树合并]
题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...
随机推荐
- ios7毛玻璃效果实现
首先看效果: 核心代码: //加模糊效果,image是图片,blur是模糊度 - (UIImage *)blurryImage:(UIImage *)image withBlurLevel ...
- hdu1711(终于搞懂了KMP算法了。。)
题意:给你两个长度分别为n(1 <= N <= 1000000)和m(1 <= M <= 10000)的序列a[]和b[],求b[]序列在a[]序列中出现的首位置.如果没有请输 ...
- OpenStack_Swift源代码分析——Object-auditor源代码分析(1)
1 Object-auditor 的启动 Object-auditor的启动和object-replicator的启动过程是一样的,首先是运行启动脚本 swift-init object-audito ...
- Android中GPS简介及其应用
GPS是Global Positioning System(全球定位系统)的简称,它的作用就是为全球的物体提供定位功能.GPS定位是一门高新技术,但对于Android程序员来说,开发GPS功能的应用程 ...
- javaweb学习路之二--上传gitgub
代码上传github 代码上传到github的步骤 第一步:申请github账号 https://github.com/注册账号 第二步:登录github,新建repository仓库,命名,创建 第 ...
- Spring data redis的一个bug
起因 前两天上线了一个新功能,导致线上业务的缓存总是无法更新,报错也是非常奇怪,redis.clients.jedis.exceptions.JedisConnectionException: Unk ...
- WPF自学笔记
WPF使用哪几种元素作为顶级元素: 1. Window元素 2. Page元素(与Window元素类似,用于可导航的应用程序) 3. Application元素(定义应用程序资源和启动设置) PS:在 ...
- git和GItHub的区别
git是一个版本控制工具.github是一个用git做版本控制的项目托管平台. 这有点类似于Wordpress和Wordpress.com的关系,前者是一个任何人都可以用的免费博客系统,后者是一个平台 ...
- js基本框架
- Ubuntu下配置修改IP地址
一.使用命令设置Ubuntu IP地址 1.修改配置文件blacklist.conf禁用IPV6:sudo vi /etc/modprobe.d/blacklist.conf 2.在文档最后添加 bl ...