线段树的合并..对于一个点x, 我们只需考虑是否需要交换左右儿子, 递归处理左右儿子.

 #include<bits/stdc++.h>

 using namespace std;

 #define M(l, r) (((l) + (r)) >> 1)

 typedef long long ll;

 const int maxn = ;

 int N, V[maxn], lc[maxn], rc[maxn], n = ;

 struct Node *null, *pt;
struct Node {
Node *l, *r;
int cnt;
Node() : cnt() {
l = r = null;
}
inline void update() {
cnt = l->cnt + r->cnt;
}
void* operator new(size_t) {
return pt++;
}
} pool[maxn * ], *root[maxn]; void init() {
pt = pool;
null = new(Node);
null->l = null->r = null;
} int v;
void build(Node* t, int l, int r) {
t->cnt = ;
if(r > l) {
int m = M(l, r);
v <= m ? build(t->l = new(Node), l, m) : build(t->r = new(Node), m + , r);
}
} ll cnt0, cnt1, ans = ; Node* merge(Node* L, Node* R) {
if(L == null) return R;
if(R == null) return L;
cnt0 += ll(L->r->cnt) * R->l->cnt;
cnt1 += ll(L->l->cnt) * R->r->cnt;
L->l = merge(L->l, R->l);
L->r = merge(L->r, R->r);
L->update();
return L;
} void read(int x) {
scanf("%d", V + x);
if(!V[x]) {
read(lc[x] = n++); read(rc[x] = n++);
}
} void work(int x) {
if(!~x) return;
work(lc[x]); work(rc[x]);
if(!V[x]) {
cnt0 = cnt1 = ;
if(!~lc[x])
root[x] = root[rc[x]];
else if(!~rc[x])
root[x] = root[lc[x]];
else
root[x] = merge(root[lc[x]], root[rc[x]]);
ans += min(cnt0, cnt1);
}
} int main() { init();
memset(lc, -, sizeof lc); memset(rc, -, sizeof rc);
scanf("%d", &N);
n = ; read(n++); for(int i = ; i < n; i++) if(V[i]) {
v = V[i];
build(root[i] = new(Node), , N);
}
work();
cout << ans << "\n"; return ;
}

2212: [Poi2011]Tree Rotations

Time Limit: 20 Sec  Memory Limit: 259 MB
Submit: 548  Solved: 195
[Submit][Status][Discuss]

Description

Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some interesting features: The tree consists of straight branches, bifurcations and leaves. The trunk stemming from the ground is also a branch. Each branch ends with either a bifurcation or a leaf on its top end. Exactly two branches fork out from a bifurcation at the end of a branch - the left branch and the right branch. Each leaf of the tree is labelled with an integer from the range . The labels of leaves are unique. With some gardening work, a so called rotation can be performed on any bifurcation, swapping the left and right branches that fork out of it. The corona of the tree is the sequence of integers obtained by reading the leaves' labels from left to right. Byteasar is from the old town of Byteburg and, like all true Byteburgers, praises neatness and order. He wonders how neat can his tree become thanks to appropriate rotations. The neatness of a tree is measured by the number of inversions in its corona, i.e. the number of pairs(I,j), (1< = I < j < = N ) such that(Ai>Aj) in the corona(A1,A2,A3…An).  The original tree (on the left) with corona(3,1,2) has two inversions. A single rotation gives a tree (on the right) with corona(1,3,2), which has only one inversion. Each of these two trees has 5 branches. Write a program that determines the minimum number of inversions in the corona of Byteasar's tree that can be obtained by rotations.

现在有一棵二叉树,所有非叶子节点都有两个孩子。在每个叶子节点上有一个权值(有n个叶子节点,满足这些权值为1..n的一个排列)。可以任意交换每个非叶子节点的左右孩子。
要求进行一系列交换,使得最终所有叶子节点的权值按照遍历序写出来,逆序对个数最少。

Input

In the first line of the standard input there is a single integer (2< = N < = 200000) that denotes the number of leaves in Byteasar's tree. Next, the description of the tree follows. The tree is defined recursively: if there is a leaf labelled with ()(1<=P<=N) at the end of the trunk (i.e., the branch from which the tree stems), then the tree's description consists of a single line containing a single integer , if there is a bifurcation at the end of the trunk, then the tree's description consists of three parts: the first line holds a single number , then the description of the left subtree follows (as if the left branch forking out of the bifurcation was its trunk), and finally the description of the right subtree follows (as if the right branch forking out of the bifurcation was its trunk).

第一行n
下面每行,一个数x
如果x==0,表示这个节点非叶子节点,递归地向下读入其左孩子和右孩子的信息,
如果x!=0,表示这个节点是叶子节点,权值为x

1<=n<=200000

Output

In the first and only line of the standard output a single integer is to be printed: the minimum number of inversions in the corona of the input tree that can be obtained by a sequence of rotations.

一行,最少逆序对个数

Sample Input

3
0
0
3
1
2

Sample Output

1

HINT

 

Source

BZOJ 2212: [Poi2011]Tree Rotations( 线段树 )的更多相关文章

  1. BZOJ.2212.[POI2011]Tree Rotations(线段树合并)

    题目链接 \(Description\) 给定一棵n个叶子的二叉树,每个叶节点有权值(1<=ai<=n).可以任意的交换两棵子树.问最后顺序遍历树得到的叶子权值序列中,最少的逆序对数是多少 ...

  2. Bzoj P2212 [Poi2011]Tree Rotations | 线段树合并

    题目链接 通过观察与思考,我们可以发现,交换一个结点的两棵子树,只对这两棵子树内的节点的逆序对个数有影响,对这两棵子树以外的节点是没有影响的.嗯,然后呢?(っ•̀ω•́)っ 然后,我们就可以对于每一个 ...

  3. bzoj 2212 : [Poi2011]Tree Rotations (线段树合并)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2212 思路:用线段树合并求出交换左右儿子之前之后逆序对的数量,如果数量变小则交换. 实现 ...

  4. 【BZOJ2212】[Poi2011]Tree Rotations 线段树合并

    [BZOJ2212][Poi2011]Tree Rotations Description Byteasar the gardener is growing a rare tree called Ro ...

  5. [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】

    题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...

  6. BZOJ 2212 [Poi2011]Tree Rotations(线段树合并)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2212 [题目大意] 给出一棵二叉树,每个叶节点上有一个权值,现在可以任意交换左右儿子, ...

  7. bzoj 2212: [Poi2011]Tree Rotations

    Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...

  8. bzoj2212/3702 [Poi2011]Tree Rotations 线段树合并

    Description Byteasar the gardener is growing a rare tree called Rotatus Informatikus. It has some in ...

  9. bzoj2212[Poi2011]Tree Rotations [线段树合并]

    题面 bzoj ans = 两子树ans + min(左子在前逆序对数, 右子在前逆序对数) 线段树合并 #include <cstdio> #include <cstdlib> ...

随机推荐

  1. Java发送HTTP POST请求(内容为xml格式)

    今天在给平台用户提供http简单接口的时候,顺便写了个调用的Java类供他参考.      服务器地址:http://5.0.217.50:17001/VideoSend 服务器提供的是xml格式的h ...

  2. android中使用jni对字符串加解密实现分析

    android中使用jni对字符串加解密实现分析 近期项目有个需求.就是要对用户的敏感信息进行加密处理,比方用户的账户password,手机号等私密信息.在java中,就对字符串的加解密我们能够使用A ...

  3. 引用类型List<T>的比较

    一:重新Equals和GetHashCode方法 /// <summary>    /// 描    述:弹出模型对象列表比较器(根据ID比较)    /// </summary&g ...

  4. JqueryMobile新手问题大全

    Jquery mobile 新手问题总汇 34 2013-04-22 / 分类:JqueryMobile / 标签:JqueryMobile,Jqm 此文章将会持续更新,主要收录一些新手比较常见的问题 ...

  5. 请求接口获取到的数据其中出现null值,处理的时候导致了程序crash,解决方案如下:

    第一种方法是使用分类给字典添加一个类方法,将字典中的null值全部替换为空字符串,代码如下: .h文件代码: @interface NSDictionary (DeleteNull) + (id)ch ...

  6. 五毛的cocos2d-x学习笔记01-创建项目

    终于准备开始学习cocos2d-x了.因为想和同学一起做游戏参加比赛,所以打算学习很热的Cocos2d-x.因为已经学习了C++,所以我想入门应该不是很困难.再加上官网有中文教程以及多不胜数的游戏开发 ...

  7. windos下安装PEAR 注意

    1.在这里下载PEAR http://pear.php.net/go-pear.phar 在页面右键另存为 go-pear.phar 到PHP的根目录,并去目录查看是否保存为了go-pear.phar ...

  8. jQuery 动态元素添加

    有这么一道题 <!DOCTYPE html> <head> <title>前端工程师面试题</title> <meta http-equiv=&q ...

  9. Publisher/Subscriber 订阅-发布模式

    Publisher/Subscriber 订阅-发布模式 本博后续将陆续整理这些年做的一些预研demo,及一些前沿技术的研究,与大家共研技术,共同进步. 关于发布订阅有很多种实现方式,下面主要介绍WC ...

  10. 转: css实现垂直居中的方法

    利用 CSS 来实现对象的垂直居中有许多不同的方法,比较难的是选择那个正确的方法.我下面说明一下我看到的好的方法和怎么来创建一个好的居中网站. 用 CSS 实现垂直居中并不容易.有些方法在一些浏览器中 ...