https://www.zhihu.com/question/34681168

CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?修改

CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?以及他们的主要用途是什么?只知道CNN是局部感受和参数共享,比较适合用于图像这方面。刚入门的小白真心       

 
个人觉得CNN、RNN和DNN不能放在一起比较。
DNN是一个大类,CNN是一个典型的空间上深度的神经网络,RNN是在时间上深度的神经网络。
推荐你从UFLDL开始看,这是斯坦福深度学习的课程,了解一些神经网络的基础,会对你的学习有很大帮助。
=============================分割线======================================
前面一位同学回答得非常详细完整,我再回来谈一谈怎么学习这些模型,我来分享一下我的学习历程。我也是在学习中,以后会慢慢继续补充。
1、http://ufldl.stanford.edu/wiki/index.php/UFLDL教程
这是我最开始接触神经网络时看的资料,把这个仔细研究完会对神经网络的模型以及如何训练(反向传播算法)有一个基本的认识,算是一个基本功。

2、Deep Learning Tutorials
这是一个开源的深度学习工具包,里面有很多深度学习模型的python代码还有一些对模型以及代码细节的解释。我觉得学习深度学习光了解模型是不难的,难点在于把模型落地写成代码,因为里面会有很多细节只有动手写了代码才会了解。但Theano也有缺点,就是极其难以调试,以至于我后来就算自己动手写几百行的代码也不愿意再用它的工具包。所以我觉得Theano的正确用法还是在于看里面解释的文字,不要害怕英文,这是必经之路。PS:推荐使用python语言,目前来看比较主流。(更新:自己写坑实在太多了,CUDA也不知道怎么用,还是乖乖用theano吧...)

3、Stanford University CS231n: Convolutional Neural Networks for Visual Recognition
斯坦福的一门课:卷积神经网络,李飞飞教授主讲。这门课会系统的讲一下卷积神经网络的模型,然后还有一些课后习题,题目很有代表性,也是用python写的,是在一份代码中填写一部分缺失的代码。如果把这个完整学完,相信使用卷积神经网络就不是一个大问题了。

4、斯坦福大学公开课 :机器学习课程
这可能是机器学习领域最经典最知名的公开课了,由大牛Andrew Ng主讲,这个就不仅仅是深度学习了,它是带你领略机器学习领域中最重要的概念,然后建立起一个框架,使你对机器学习这个学科有一个较为完整的认识。这个我觉得所有学习机器学习的人都应该看一下,我甚至在某公司的招聘要求上看到过:认真看过并深入研究过Andrew Ng的机器学习课程,由此可见其重要性。

 
 
 
 
 
 
 
 

 

 
 

CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?的更多相关文章

  1. 神经网络 之 DNN(深度神经网络) 介绍

    CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络) CNN 专门解决图像问题的,可用把它看作特征提取层,放在输入层上,最后用MLP 做分类. RNN 专门解决时间序列问题的,用来提 ...

  2. CNN(卷积神经网络)、RNN(循环神经网络)和DNN(深度神经网络)

    本文转载修改自:知乎-科言君 感知机(perceptron) 神经网络技术起源于上世纪五.六十年代,当时叫感知机(perceptron),拥有输入层.输出层和一个隐含层.输入的特征向量通过隐含层变换达 ...

  3. 神经网络6_CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)概念区分理解

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程,QQ:231469242) https://study.163.com/course/introduction.htm?courseId ...

  4. Keras(四)CNN 卷积神经网络 RNN 循环神经网络 原理及实例

    CNN 卷积神经网络 卷积 池化 https://www.cnblogs.com/peng8098/p/nlp_16.html 中有介绍 以数据集MNIST构建一个卷积神经网路 from keras. ...

  5. Recurrent Neural Networks(RNN) 循环神经网络初探

    1. 针对机器学习/深度神经网络“记忆能力”的讨论 0x1:数据规律的本质是能代表此类数据的通用模式 - 数据挖掘的本质是在进行模式提取 数据的本质是存储信息的介质,而模式(pattern)是信息的一 ...

  6. 深度神经网络(DNN)是否模拟了人类大脑皮层结构?

    原文地址:https://www.zhihu.com/question/59800121/answer/184888043 神经元 在深度学习领域,神经元是最底层的单元,如果用感知机的模型, wx + ...

  7. numpy 构建深度神经网络来识别图片中是否有猫

    目录 1 构建数据 2 随机初始化数据 3 前向传播 4 计算损失 5 反向传播 6 更新参数 7 构建模型 8 预测 9 开始训练 10 进行预测 11 以图片的形式展示预测后的结果 搭建简单神经网 ...

  8. 3. CNN卷积网络-反向更新

    1. CNN卷积网络-初识 2. CNN卷积网络-前向传播算法 3. CNN卷积网络-反向更新 1. 前言 如果读者详细的了解了DNN神经网络的反向更新,那对我们今天的学习会有很大的帮助.我们的CNN ...

  9. CNN(卷积神经网络)、RNN(循环神经网络)、DNN,LSTM

    http://cs231n.github.io/neural-networks-1 https://arxiv.org/pdf/1603.07285.pdf https://adeshpande3.g ...

随机推荐

  1. BZOJ1116: [POI2008]CLO

    1116: [POI2008]CLO Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 565  Solved: 303[Submit][Status] ...

  2. Linux企业级项目实践之网络爬虫(13)——处理user-agent

    User Agent即用户代理,是Http协议中的一部分,属于头域的组成部分,User Agent也简称UA.它是一个特殊字符串头,是一种向访问网站提供你所使用的浏览器类型及版本.操作系统及版本.浏览 ...

  3. 【 Failed to create the Java Virtual Machine】的2种解决方式

    初学Android,下载并安装好了eclipse,ADT和SDK之后,打开Eclipse时,出现: Failed to create the Java Virtual Machine 点击确定,ecl ...

  4. 黑马程序员_Java_String

    String类 一.概述 字符串是一个特殊的对象. 字符串一旦初始化就不可以被改变. String s1 = "abc";//s1是一个类类型变量,"abc"是 ...

  5. 关于Java集合的总结

    (一)List: ArrayList 以数组实现.节约空间,但数组有容量限制.超出限制时会增加50%容量,用System.arraycopy()复制到新的数组,因此最好能给出数组大小的预估值.默认第一 ...

  6. 深入理解linux网络技术内幕读书笔记(四)--通知链

    Table of Contents 1 概述 2 定义链 3 链注册 4 链上的通知事件 5 网络子系统的通知链 5.1 包裹函数 5.2 范例 6 测试实例 概述 [注意] 通知链只在内核子系统之间 ...

  7. Spring Ldap 的增删改查

    package ldap.entity; /** * 本测试类person对象来自schema文件的core.schema文件 * objectClass为person,必填属性和可选属性也是根据该对 ...

  8. 退役笔记一#MySQL = lambda sql : sql + ' Source Code 4 Explain Plan '

    Mysql 查询运行过程 大致分为4个阶段吧: 语法分析(sql_parse.cc<词法分析, 语法分析, 语义检查 >) >>sql_resolver.cc # JOIN.p ...

  9. [RxJS] Completing a Stream with TakeWhile

    Subscribe can take three params: subscribe( (x)=> console.log(x), err=> console.log(err), ()=& ...

  10. 在Ubuntu上下载、编译和安装Android最新内核源代码(Linux Kernel)

    文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/6564592 在前一篇文章提到,从源代码树下载下 ...