Moore-Penrose Matrix Inverse 摩尔-彭若斯广义逆 埃尔米特矩阵 Hermitian matrix
http://mathworld.wolfram.com/Moore-PenroseMatrixInverse.html
显然,埃尔米特矩阵主对角线上的元素都是实数的,其特征值也是实数。对于只包含实数元素的矩阵(实矩阵),如果它是对称阵,即所有元素关于主对角线对称,那么它也是埃尔米特矩阵。也就是说,实对称矩阵是埃尔米特矩阵的特例。
https://en.wikipedia.org/wiki/Hermitian_matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the i-th row and j-th column is equal to the complex conjugate of the element in the j-th row and i-th column, for all indices i and j:
-
or
, in matrix form.
Hermitian matrices can be understood as the complex extension of real symmetric matrices.
If the conjugate transpose of a matrix is denoted by
, then the Hermitian property can be written concisely as
Hermitian matrices are named after Charles Hermite, who demonstrated in 1855 that matrices of this form share a property with real symmetric matrices of always having real eigenvalues.
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_pseudoinverse
Moore-Penrose Matrix Inverse 摩尔-彭若斯广义逆 埃尔米特矩阵 Hermitian matrix的更多相关文章
- Bayesian generalized linear model (GLM) | 贝叶斯广义线性回归实例
一些问题: 1. 什么时候我的问题可以用GLM,什么时候我的问题不能用GLM? 2. GLM到底能给我们带来什么好处? 3. 如何评价GLM模型的好坏? 广义线性回归啊,虐了我快几个月了,还是没有彻底 ...
- R语言编程艺术# 矩阵(matrix)和数组(array)
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一 ...
- 图片变换 矩阵 Bitmap Matrix
Matrix矩阵介绍 在Android中,对图片的处理需要使用到Matrix类,Matrix是一个3 x 3的矩阵,内部就是个一维数组,内部有9个元素:可以通过setValues( float[])进 ...
- ML01 机器学习后利用混淆矩阵Confusion matrix 进行结果分析
目标: 快速理解什么是混淆矩阵, 混淆矩阵是用来干嘛的. 首先理解什么是confusion matrix 看定义,在机器学习领域,混淆矩阵(confusion matrix),又称为可能性表格或是 ...
- [Swift]LeetCode54. 螺旋矩阵 | Spiral Matrix
Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral or ...
- [Swift]LeetCode766. 托普利茨矩阵 | Toeplitz Matrix
A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same element. Now given ...
- 【Math for ML】矩阵分解(Matrix Decompositions) (下)
[Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular V ...
- 【Math for ML】矩阵分解(Matrix Decompositions) (上)
I. 行列式(Determinants)和迹(Trace) 1. 行列式(Determinants) 为避免和绝对值符号混淆,本文一般使用\(det(A)\)来表示矩阵\(A\)的行列式.另外这里的\ ...
- R语言编程艺术#02#矩阵(matrix)和数组(array)
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一 ...
随机推荐
- JavaScript取指定时区的时间
// 北京是getZoneTime(8),纽约是getZoneTime(-5),班加罗尔是getZoneTime(5.5). 偏移值是本时区相对于格林尼治所在时区的时区差值 function getZ ...
- Solidworks草图或者特征无法删除怎么办
单击重新建模之后即可删除.
- 载入本地Html文件
NSString * resousePath = [[NSBundle mainBundle]resourcePath]; NSString * filePath = [resouse ...
- MySQL5.5中文支持
1. /etc/my.cnf.d/client.cnf [client] #password = [your_password] port = 3306 socket = /tmp/mysql.soc ...
- IOS与安卓的远程调试
本地调试H5页面方案总结 http://www.jianshu.com/p/a43417b28280 Fiddler 手机抓包 http://blog.csdn.net/gld824125233/ar ...
- 经常使用socket函数具体解释
经常使用socket函数具体解释 关于socket函数,每一个的意义和基本功能都知道,但每次使用都会去百度,參数究竟是什么,返回值代表什么意义.就是说用的少,也记得不够精确. 每次都查半天.常常烦恼于 ...
- Selection Problem (选择问题)
在一个由n个元素组成的集合中,第i个“顺序统计量(order statistic)”是该集合中第i小的元素.例如,在一个由n个元素组成的集合中,最小值是第1个顺序统计量,最大值是第n个顺序统计量.而“ ...
- [译]GLUT教程 - 初始化
Lighthouse3d.com >> GLUT Tutorial >> Basics >> Initialization 这一节开始从main函数入手.第一步是线 ...
- 《TomCat与Java Web开发技术详解》(第二版) 第五章节的学习总结 ---- Servlet的高级用法
这一章节主要是介绍了Servlet技术的一些高级用法,如下是我自己的整理归纳 1.下载文件:即获取服务器文件,并把文件写入反馈给客户端 ServletContext.getResourceAsStre ...
- dwr文件上传
配置FileService映射: dwr.xml <create creator="new"> <param name="class" val ...