#调整随机森林的参数(调整max_features,结果未见明显差异)
#调整随机森林的参数(调整max_features,结果未见明显差异) from sklearn import datasets
X, y = datasets.make_classification(n_samples=10000,n_features=20,n_informative=15,flip_y=.5, weights=[.2, .8]) import numpy as np
training = np.random.choice([True, False], p=[.8, .2],size=y.shape) from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
rf.fit(X[training], y[training])
preds = rf.predict(X[~training])
print ("Accuracy:\t", (preds == y[~training]).mean()) from sklearn.metrics import confusion_matrix
max_feature_params = ['auto', 'sqrt', 'log2', .01, .5, .99]
confusion_matrixes = {}
for max_feature in max_feature_params:
rf = RandomForestClassifier(max_features=max_feature)
rf.fit(X[training], y[training])
print ("Accuracy:\t", (preds == y[~training]).mean())
confusion_matrixes= confusion_matrix(y[~training],rf.predict(X[~training]))
print(max_feature,confusion_matrixes)
print('--------------------------------------------------------------------') from sklearn.metrics import confusion_matrix
y_true = [2, 0, 2, 2, 0, 1]
y_pred = [0, 0, 2, 2, 0, 2]
print(confusion_matrix(y_true, y_pred)) y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
print(confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"]))
'''
Accuracy: 0.640324214792
Accuracy: 0.640324214792
auto [[278 403]
[306 987]]
--------------------------------------------------------------------
Accuracy: 0.640324214792
sqrt [[280 401]
[324 969]]
--------------------------------------------------------------------
Accuracy: 0.640324214792
log2 [[304 377]
[320 973]]
--------------------------------------------------------------------
Accuracy: 0.640324214792
0.01 [[285 396]
[324 969]]
--------------------------------------------------------------------
Accuracy: 0.640324214792
0.5 [[289 392]
[305 988]]
--------------------------------------------------------------------
Accuracy: 0.640324214792
0.99 [[294 387]
[295 998]]
--------------------------------------------------------------------
[[2 0 0]
[0 0 1]
[1 0 2]]
[[2 0 0]
[0 0 1]
[1 0 2]]
'''
#调整随机森林的参数(调整max_features,结果未见明显差异)的更多相关文章
- #调整随机森林的参数(调整n_estimators随机森林中树的数量默认10个树,精度递增显著,但并不是越多越好),加上verbose=True,显示进程使用信息
#调整随机森林的参数(调整n_estimators随机森林中树的数量默认10个树,精度递增显著) from sklearn import datasets X, y = datasets.make_c ...
- sklearn中随机森林的参数
一:sklearn中决策树的参数: 1,criterion: ”gini” or “entropy”(default=”gini”)是计算属性的gini(基尼不纯度)还是entropy(信息增益),来 ...
- Sysctl命令及linux内核参数调整
一.Sysctl命令用来配置与显示在/proc/sys目录中的内核参数.如果想使参数长期保存,可以通过编辑/etc/sysctl.conf文件来实现. 命令格式: sysctl [-n ...
- kaggle数据挖掘竞赛初步--Titanic<随机森林&特征重要性>
完整代码: https://github.com/cindycindyhi/kaggle-Titanic 特征工程系列: Titanic系列之原始数据分析和数据处理 Titanic系列之数据变换 Ti ...
- 随机森林入门攻略(内含R、Python代码)
随机森林入门攻略(内含R.Python代码) 简介 近年来,随机森林模型在界内的关注度与受欢迎程度有着显著的提升,这多半归功于它可以快速地被应用到几乎任何的数据科学问题中去,从而使人们能够高效快捷地获 ...
- 机器学习 —— 决策树及其集成算法(Bagging、随机森林、Boosting)
本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 决策树--------------------------------------------- ...
- R语言︱机器学习模型评估方案(以随机森林算法为例)
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评 ...
- 大白话5分钟带你走进人工智能-第二十九节集成学习之随机森林随机方式 ,out of bag data及代码(2)
大白话5分钟带你走进人工智能-第二十九节集成学习之随机森林随机方式 ,out of bag data及代码(2) 上一节中我们讲解了随机森林的基本概念,本节的话我们讲解随机森 ...
- 机器学习:随机森林RF-OBB袋外错误率
文章讲解比较详细,且有Python代码,可以作为有用的参考. 原文链接:http://blog.csdn.net/zhufenglonglove/article/details/51785220 参 ...
随机推荐
- javascript语言历史
起初,web站点事实上只不过是一个静态的HTML文档集,这些文档之间仅依靠一些简单的超链接(Hyperlinks)绑定在一起. 但很快,随着Web业务的快速普及和增长,网站管理者越来越希望自己所创建的 ...
- eclipse下进行c开发,使用zeromq
使用eclipse开发代码,一段zeromq的代码. #include <string.h> #include <stdio.h> #include <unistd.h& ...
- .net core web发布到CentOS汇总
直到今天我的博客终于可以见世人了,中间懒了很长一段时间,什么也没干,也没怎么学习,前段时间也是各种折腾,无心学习.本篇主要汇总下从一开始到现在遇到的问题汇总,作为学习笔记.我的博客就是我的学习笔记,因 ...
- 程序员怎样迈出从5K到1W的重要一步
为什么一个相似的功能,大牛一会儿就搞定,然后悠闲地品着下午茶逛淘宝:而自己加班加点搞到天亮还做不完. 为什么用户提出需求变更后,大牛只需潇洒地敲敲键盘,改改配置:而自己将代码改了又改,删了又建,几乎晕 ...
- Shiro安全配置
主要还是整合了本地ehcache,集群session管理过段时间放出 <?xml version="1.0" encoding="UTF-8"?> ...
- Container容器调用构造函数
- github 第一次使用及出现的问题解决
1.前言: 我们使用git,自然是希望我们的项目可以方便的从本地上传到git的仓库中,从而实现项目版本控制和备份,但是,从GitHub的网站上传文件,只能上传25MB的数据,我想多数人的项目都不可能只 ...
- Javasript 内置函数
var str = 'AAAA';var aTest= new Array(); //['ff'[,'er']] \ new Array(10); \ new Array('ff','fee');va ...
- 201621123014《Java程序设计》第十二周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容. 2. 面向系统综合设计-图书馆管理系统或购物车 使用流与文件改造你的图书馆管理系统或购物车. 2.1 简述如何 ...
- codewar代码练习2——7级晋升6级
7级晋升到6级的过程中以做6级题以及以前未完成的题目为主,一般选择算法题或者基础题.相比之前从8级升级7级(参见此博客:http://blog.csdn.net/m0_37324740/article ...