【机器学习详解】SMO算法剖析

转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51227754

CSDN−勿在浮沙筑高台

本文力求简化SMO的算法思想,毕竟自己理解有限,无奈还是要拿一堆公式推来推去,但是静下心看完本篇并随手推导,你会迎刃而解的。推荐参看SMO原文中的伪代码。

1.SMO概念

上一篇博客已经详细介绍了SVM原理,为了方便求解,把原始最优化问题转化成了其对偶问题,因为对偶问题是一个凸二次规划问题,这样的凸二次规划问题具有全局最优解,如下: 
 
其中(xi,yi)表示训练样本数据,xi为样本特征,yi∈{−1,1}为样本标签,C为惩罚系数由自己设定。上述问题是要求解N个参数(α1,α2,α3,...,αN),其他参数均为已知,有多种算法可以对上述问题求解,但是算法复杂度均很大。但1998年,由Platt提出的序列最小最优化算法(SMO)可以高效的求解上述SVM问题,它把原始求解N个参数二次规划问题分解成很多个子二次规划问题分别求解,每个子问题只需要求解2个参数,方法类似于坐标上升,节省时间成本和降低了内存需求。每次启发式选择两个变量进行优化,不断循环,直到达到函数最优值。

2.SMO原理分析

2.1视为一个二元函数

为了求解N个参数(α1,α2,α3,...,αN),首先想到的是坐标上升的思路,例如求解α1,可以固定其他N-1个参数,可以看成关于α1的一元函数求解,但是注意到上述问题的等式约束条件∑Ni=1yiαi=0,当固定其他参数时,参数α1也被固定,因此此种方法不可用。 
SMO算法选择同时优化两个参数,固定其他N-2个参数,假设选择的变量为α1,α2,固定其他参数α3,α4,...,αN,由于参数α3,α4,...,αN的固定,可以简化目标函数为只关于α1,α2的二元函数,Constant表示常数项(不包含变量α1,α2的项)。

min Ψ(α1,α2)=12K11α21+12K22α22+y1y2K12α1α2−(α1+α2)+y1v1α1+y2v2α2+Constant(1)

其中vi=∑Nj=3αjyjK(xi,xj),i=1,2

2.2视为一元函数

由等式约束得:α1y1+α2y2=−∑Ni=3αiyi=ζ,可见ζ为定值。 
等式α1y1+α2y2=ζ两边同时乘以y1,且y21=1,得

α1=(ζ−y2α2)y1(2)

(2)式带回到(1)中得到只关于参数α2的一元函数,由于常数项不影响目标函数的解,以下省略掉常数项Constant

min Ψ(α2)=12K11(ζ−α2y2)2+12K22α22+y2K12(ζ−α2y2)α2−(ζ−α2y2)y1−α2+v1(ζ−α2y2)+y2v2α2(3)

2.3对一元函数求极值点

上式中是关于变量α2的函数,对上式求导并令其为0得: 
∂Ψ(α2)∂α2=(K11+K22−2K12)α2−K11ζy2+K12ζy2+y1y2−1−v1y2+v2y2=0

1.由上式中假设求得了α2的解,带回到(2)式中可求得α1的解,分别记为αnew1,αnew2,优化前的解记为αold1,αold2;由于参数α3,α4,...,αN固定,由等式约束∑Ni=1yiαi=0有αold1y1+αold2y2=−∑Ni=3αiyi=αnew1y1+αnew2y2=ζ

ζ=αold1y1+αold2y2(4)

2.假设SVM超平面的模型为f(x)=wTx+b,上一篇中已推导出w的表达式,将其带入得f(x)=∑Ni=1αiyiK(xi,x)+b;f(xi)表示样本xi的预测值,yi表示样本xi的真实值,定义Ei表示预测值与真实值之差为

Ei=f(xi)−yi(5)

3.由于vi=∑Nj=3αjyjK(xi,xj),i=1,2,因此

v1=f(x1)−∑j=12yjαjK1j−b(6)
v2=f(x2)−∑j=12yjαjK2j−b(7)

把(4)(6)(7)带入下式中: 
(K11+K22−2K12)α2−K11ζy2+K12ζy2+y1y2−1−v1y2+v2y2=0 
化简得: 此时求解出的αnew2未考虑约束问题,先记为αnew,unclipped2: 
(K11+K22−2K12)αnew,unclipped2=(K11+K22−2K12)αold2+y2[y2−y1+f(x1)−f(x2)] 
带入(5)式,并记η=K11+K22−2K12得:

αnew,unclipped2=αold2+y2(E1−E2)η(8)

2.4对原始解修剪

上述求出的解未考虑到约束条件:

  • 0≤αi=1,2≤C
  • α1y1+α2y2=ζ

在二维平面上直观表达上述两个约束条件 
 
最优解必须要在方框内且在直线上取得,因此L≤αnew2≤H; 
当y1≠y2时,L=max(0,αold2−αold1);H=min(C,C+αold2−αold1) 
当y1=y2时,L=max(0,αold1+αold2−C);H=min(C,αold2+αold1) 
经过上述约束的修剪,最优解就可以记为αnew2了。

αnew2=⎧⎩⎨⎪⎪⎪⎪ H ,αnew,unclipped2>Hαnew,unclipped2,L⩽αnew,unclipped2⩽H L ,αnew,unclipped2<L

2.5求解αnew1

由于其他N-2个变量固定,因此αold1y1+αold2y2=αnew1y1+αnew2y2所以可求得

αnew1=αold1+y1y2(αold2−αnew2)(9)

2.6取临界情况

大部分情况下,有η=K11+K22−2K12>0。但是在如下几种情况下,αnew2需要取临界值L或者H.

  1. η<0,当核函数K不满足Mercer定理时,矩阵K非正定;
  2. η=0,样本x1与x2输入特征相同;

也可以如下理解,对(3)式求二阶导数就是η=K11+K22−2K12, 
当η<0时,目标函数为凸函数,没有极小值,极值在定义域边界处取得。 
当η=0时,目标函数为单调函数,同样在边界处取极值。 
计算方法: 
即当αnew2=L和αnew2=H分别带入(9)式中,计算出αnew1=L1和αnew1=H1,其中s=y1y2 

带入目标函数(1)内,比较Ψ(α1=L1,α2=L)与Ψ(α1=H1,α2=H)的大小,α2取较小的函数值对应的边界点。 
 
其中 

3.启发式选择变量

上述分析是在从N个变量中已经选出两个变量进行优化的方法,下面分析如何高效地选择两个变量进行优化,使得目标函数下降的最快。

第一个变量的选择

第一个变量的选择称为外循环,首先遍历整个样本集,选择违反KKT条件的αi作为第一个变量,接着依据相关规则选择第二个变量(见下面分析),对这两个变量采用上述方法进行优化。当遍历完整个样本集后,遍历非边界样本集(0<αi<C)中违反KKT的αi作为第一个变量,同样依据相关规则选择第二个变量,对此两个变量进行优化。当遍历完非边界样本集后,再次回到遍历整个样本集中寻找,即在整个样本集与非边界样本集上来回切换,寻找违反KKT条件的αi作为第一个变量。直到遍历整个样本集后,没有违反KKT条件αi,然后退出。 
边界上的样本对应的αi=0或者αi=C,在优化过程中很难变化,然而非边界样本0<αi<C会随着对其他变量的优化会有大的变化。 

第二个变量的选择

SMO称第二个变量的选择过程为内循环,假设在外循环中找个第一个变量记为α1,第二个变量的选择希望能使α2有较大的变化,由于α2是依赖于|E1−E2|,当E1为正时,那么选择最小的Ei作为E2,如果E1为负,选择最大Ei作为E2,通常为每个样本的Ei保存在一个列表中,选择最大的|E1−E2|来近似最大化步长。 
有时按照上述的启发式选择第二个变量,不能够使得函数值有足够的下降,这时按下述步骤:

首先在非边界集上选择能够使函数值足够下降的样本作为第二个变量, 
如果非边界集上没有,则在整个样本集上选择第二个变量, 
如果整个样本集依然不存在,则重新选择第一个变量。

4.阈值b的计算

每完成对两个变量的优化后,要对b的值进行更新,因为b的值关系到f(x)的计算,即关系到下次优化时Ei的计算。 
1.如果0<αnew1<C,由KKT条件y1(wTx1+b)=1,得到∑Ni=1αiyiKi1+b=y1,由此得:

bnew1=y1−∑i=3NαiyiKi1−αnew1y1K11−αnew2y2K21

由(5)式得,上式前两项可以替换为:

y1−∑i=3NαiyiKi1=−E1+αold1y1K11+αold2y2K11+bold

得出:

bnew1=−E1−y1K11(αnew1−αold1)−y2K21(αnew2−αold2)+bold

2.如果0<αnew2<C,则

bnew2=−E2−y1K12(αnew1−αold1)−y2K22(αnew2−αold2)+bold

3.如果同时满足0<αnewi<C,则bnew1=bnew2 
4.如果同时不满足0<αnewi<C,则bnew1与bnew2以及它们之间的数都满足KKT阈值条件,这时选择它们的中点。(关于这个我不理解…)

建议参看SMO原文的伪代码

参考: 
统计学习方法,李航 
Sequential Minimal Optimization:A Fast Algorithm for Training Support Vector Machines,John C. Platt 
http://www.cnblogs.com/jerrylead/archive/2011/03/18/1988419.html

【机器学习详解】SMO算法剖析(转载)的更多相关文章

  1. 深入理解SVM,详解SMO算法

    今天是机器学习专题第35篇文章,我们继续SVM模型的原理,今天我们来讲解的是SMO算法. 公式回顾 在之前的文章当中我们对硬间隔以及软间隔问题都进行了分析和公式推导,我们发现软间隔和硬间隔的形式非常接 ...

  2. BM算法  Boyer-Moore高质量实现代码详解与算法详解

    Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...

  3. SVD在推荐系统中的应用详解以及算法推导

    SVD在推荐系统中的应用详解以及算法推导     出处http://blog.csdn.net/zhongkejingwang/article/details/43083603 前面文章SVD原理及推 ...

  4. 机器学习 | 详解GBDT在分类场景中的应用原理与公式推导

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第31篇文章,我们一起继续来聊聊GBDT模型. 在上一篇文章当中,我们学习了GBDT这个模型在回归问题当中的原理.GBD ...

  5. Java虚拟机详解04----GC算法和种类【重要】

    [声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/4 ...

  6. Java虚拟机详解04----GC算法和种类

    [声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/4 ...

  7. oracle 数据类型详解---日期型(转载)

    oracle 数据类型详解---日期型 oracle数据类型看起来非常简单,但用起来会发现有许多知识点,本文是我对ORACLE日期数据类型的一些整理,都是开发入门资料,与大家分享: 注:由于INTER ...

  8. SATB深入详解与问题剖析【纯理论】

    延着上一次[https://www.cnblogs.com/webor2006/p/11147893.html]的理论继续. SATB: 在G1中,使用的是SATB(Snapshot-At-The-B ...

  9. application.properties详解 --springBoot配置文件【转载】

    # spring boot application.properties配置的各个属性详解 # 该示例文件作为标准提供.(官方文档 翻译过来的) # 还是花了些功夫翻译,各位如果转发,请留下本文地址, ...

随机推荐

  1. 几何【P2313】 [HNOI2005]汤姆的游戏

    顾z 你没有发现两个字里的blog都不一样嘛 qwq 题目描述--->p2313 [HNOI]汤姆的游戏 分析 说不上是分析. 数据范围给出来,这题明显暴力啊emmm. 个人认为的坑点. 这题不 ...

  2. SONY的一款Win8平板

    今天看到了SONY新发布的一款x86的平板电脑: 铝合金的机身,分离的屏幕,非常漂亮.参数上还是很给力的,i5-4210/i7-4610的处理器,1920x1080的屏幕.4G的内存.9.9mm的厚度 ...

  3. rs485

    rs485 编辑 智能仪表是随着80年代初单片机技术的成熟而发展起来的,现在世界仪表市场基本被智能仪表所垄断.究其原因就是企业信息化的需要,企业在仪表选型时其中的一个必要条件就是要具有联网通信接口.最 ...

  4. Delphi创建开机启动项的方法示例

    Delphi可以通过创建开机启动项键值的方法,将程序添加到开机启动项中.通过本实例代码就可以为您的程序添加到快速启动中,随着Windows一起启动,开机即运行的程序.该实例代码简单,主要是通过添加注册 ...

  5. App Distribution Guide (一)

    This guide contains everything you need to know to distribute an app through the App Store or Mac Ap ...

  6. android 管理wifi

    activity_main.xml <?xml version="1.0" encoding="utf-8"?> <LinearLayout ...

  7. flask的session研究和flask-login的session研究

    1.httpie的安装:https://github.com/jakubroztocil/httpie#macos 2.http://python.jobbole.com/87450/ 3.http: ...

  8. 面试——谈谈对JAVA的理解

    谈谈你对Java平台的理解.答:Java首先是一种面向对象的语言,语言特性有封装,继承,多态,泛型,Lamda表达式等; 第二个特性:支持跨平台,一次书写导出运行(write once,run any ...

  9. CentOS 7.2安装lepus数据库监控系统

      环境说明 系统版本 CentOS 7.2 x86_64 软件版本 lepus 3.7 Lepus是一套开源的数据库监控平台,目前已经支持MySQL.Oracle.SQLServer.MongoDB ...

  10. iptables 的学习资源

    慕课网:https://www.imooc.com/video/7617 马哥linux视频:http://edu.51cto.com//center/course/lesson/index?id=9 ...