[BZOJ1997][Hnoi2010]Planar 2-sat (联通分量) 平面图
1997: [Hnoi2010]Planar
Time Limit: 10 Sec Memory Limit: 64 MB
Submit: 2317 Solved: 850
[Submit][Status][Discuss]
Description

Input

Output

Sample Input
6 9
1 4
1 5
1 6
2 4
2 5
2 6
3 4
3 5
3 6
1 4 2 5 3 6
5 5
1 2
2 3
3 4
4 5
5 1
1 2 3 4 5
Sample Output
YES
HINT
Source
太强辣。
平面图的边数不大于3*n-6剪枝。
先将环提出来,对于剩下的边,我们可以选择在环外连还是在环内连。
对于不相交的边,显然在环外连和在环内连都不会相交。
对于相交的边,显然不能同时在环外连或在环内连。只能一个在环外一个在环内。
将一条边拆为环外、环内两条边,构造2-sat。
判断2*i和2*i-1是否在同一个联通分量里。
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#define LL long long
#define mod 19650827
using namespace std;
int read() {
char ch=getchar();int x=,f=;
while(!isdigit(ch)){ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x;
}
int T;
int n,m;
struct data {
int u,v;
}a[];
int pos[];
int cnt=;
int head[],cntt;
struct edge {
int to,next;
}e[];
void add(int u,int v) {e[cntt].to=v;e[cntt].next=head[u];head[u]=cntt++;}
int dfn[],low[],inq[],sz;
int sta[],top,bl[],scc;
void tarjan(int now) {
dfn[now]=low[now]=++sz;
sta[++top]=now;inq[now]=;
for(int i=head[now];i>=;i=e[i].next) {
int to=e[i].to;
if(!dfn[to]) {tarjan(to);low[now]=min(low[now],low[to]);}
else if(inq[to]) {low[now]=min(low[now],dfn[to]);}
}
if(low[now]==dfn[now]) {
int x=-;
scc++;
while(x!=now) {
x=sta[top--];inq[x]=;
bl[x]=scc;
}
}
}
int main() {
T=read();
while(T--) {
cnt=;cntt=;top=;scc=;sz=;
memset(head,-,sizeof(head));
memset(dfn,,sizeof(dfn));memset(low,,sizeof(low));
memset(inq,,sizeof(inq));
n=read(),m=read();
for(int i=;i<=m;i++) a[i].u=read(),a[i].v=read();
for(int i=;i<=n;i++) pos[read()]=i;
if(m>*n-){printf("NO\n");continue;}
for(int i=;i<=m;i++) {
int c=abs(pos[a[i].u]-pos[a[i].v]);
if(c==||(max(pos[a[i].u],pos[a[i].v])==n&&min(pos[a[i].u],pos[a[i].v])==)) continue;
a[++cnt]=a[i];
}
for(int i=;i<=cnt;i++) {
for(int j=i+;j<=cnt;j++) {
int t1=pos[a[i].u],t2=pos[a[i].v];
if(t1>t2) swap(t1,t2);
int t3=pos[a[j].u],t4=pos[a[j].v];
if(t3>t4) swap(t3,t4);
if((t1<t3&&t2<t4&&t2>t3)||(t1>t3&&t2>t4&&t1<t4)) {
add(*i-,*j);add(*j,*i-);
add(*i,*j-);add(*j-,*i);
}
}
}
for(int i=;i<=*cnt;i++) if(!dfn[i]) tarjan(i);
bool flag=;
for(int i=;i<=cnt;i++) if(bl[*i]==bl[*i-]){printf("NO\n");flag=;break;}
if(flag)printf("YES\n");
}
}
[BZOJ1997][Hnoi2010]Planar 2-sat (联通分量) 平面图的更多相关文章
- [bzoj1997][Hnoi2010]Planar(2-sat||括号序列)
开始填连通分量的大坑了= = 然后平面图有个性质m<=3*n-6..... 由平面图的欧拉定理n-m+r=2(r为平面图的面的个数),在极大平面图的情况可以代入得到m=3*n-6. 网上的证明( ...
- bzoj千题计划231:bzoj1997: [Hnoi2010]Planar
http://www.lydsy.com/JudgeOnline/problem.php?id=1997 如果两条边在环内相交,那么一定也在环外相交 所以环内相交的两条边,必须一条在环内,一条在环外 ...
- BZOJ1997 [Hnoi2010]Planar (2-sat)
题意:给你一个哈密顿图,判断是不是平面图 思路:先找出哈密顿图来.哈密顿回路可以看成一个环,把边集划分成两个集合,一个在环内,一个在外.如果有两条相交边在环内,则一定不是平面图,所以默认两条相交边,转 ...
- BZOJ1997 [Hnoi2010]Planar 【2-sat】
题目链接 BZOJ1997 题解 显然相交的两条边不能同时在圆的一侧,\(2-sat\)判一下就好了 但这样边数是\(O(m^2)\)的,无法通过此题 但是\(n\)很小,平面图 边数上界为\(3n ...
- bzoj1997: [Hnoi2010]Planar
2-SAT. 首先有平面图定理 m<=3*n-6,如果不满足这条件肯定不是平面图,直接退出. 然后构成哈密顿回路的边直接忽略. 把哈密顿回路当成一个圆, 如果俩条边交叉(用心去感受),只能一条边 ...
- bzoj1997 [Hnoi2010]Planar——2-SAT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1997 神奇的经典2-SAT问题! 对于两个相交的区间,只能一里一外连边,所以可以进行2-SA ...
- bzoj1997 [HNOI2010]平面图判定Plana
bzoj1997 [HNOI2010]平面图判定Planar 链接 bzoj luogu 思路 好像有很多种方法过去.我只说2-sat 环上的边,要不在里面,要不在外边. 有的边是不能同时在里面的,可 ...
- 【BZOJ1997】[Hnoi2010]Planar 2-SAT
[BZOJ1997][Hnoi2010]Planar Description Input Output Sample Input 2 6 9 1 4 1 5 1 6 2 4 2 5 2 6 3 4 3 ...
- BZOJ 1997: [Hnoi2010]Planar( 2sat )
平面图中E ≤ V*2-6.. 一个圈上2个点的边可以是在外或者内, 经典的2sat问题.. ----------------------------------------------------- ...
随机推荐
- Java算法求最大最小值,倒序,冒泡排序,斐波纳契数列,日历一些经典算法
一,求最大,最小值 int[] a={21,31,4,2,766,345,2,34}; //这里防止数组中有负数,所以初始化的时候给的数组中的第一个数. int max=a[0]; int min=a ...
- [转]ANDROID JNI之JAVA域与c域的互操作
本文讲述AndroidJava域与C域互操作:Java域调用c域的函数:c域访问Java域的属性和方法:c域生成的对象的保存与使用.重点讲解c域如何访问Java域. 虽然AndroidJNI实现中,c ...
- 【tmux环境配置】在centos6.4上配置tmux
我学习tmux的动力如下: (1)tmux大法好.原因是被同学安利过tmux. (2)多个terminal下ssh到开发机太麻烦.还是之前实习的时候,总要开N个terminal去ssh开发机,这种东西 ...
- 【Kernal Support Vector Machine】林轩田机器学习技术
考虑dual SVM 问题:如果对原输入变量做了non-linear transform,那么在二次规划计算Q矩阵的时候,就面临着:先做转换,再做内积:如果转换后的项数很多(如100次多项式转换),那 ...
- web前端开发总结(未完)
由于我也是接触前端开发不久,所以呢,自己也会做点小功课,于是,我把前端能够用到的知识稍稍做了下总结,总结的不全面,以后会慢慢完善的! 移动前端开发基础 (总结----待完善)1.移动前端开发:简而言之 ...
- Percona-Tookit工具包之pt-table-usage
Preface There always be some table join operations in our SQL statement.Although we can know ...
- CS局域网射击
2/3D游戏:3D 辅助插件:角色控制器 游戏制作难度系数:中级 用到的其他工具:network 一.解决由于子弹射击速度过快而无法打到物体的问题 //方法一: ; Vector3 originalP ...
- Python全栈工程师(异常(基础))
ParisGabriel 每天坚持手写 一天一篇 决定坚持几年 为了梦想为了信仰 Python人工智能从入门到精通 补充:包的相对导入 只对后两种导入方式有用 ...
- 1102 Invert a Binary Tree (25 分)(二叉树遍历)
二叉树有N个结点,给出每个结点的左右孩子结点的编号,把二叉树反转(左右孩子交换 所以是后序遍历交换) 输出反转后二叉树的层序遍历和中序遍历 #include<bits/stdc++.h> ...
- Leetcode 658.找到K个最接近的元素
找到k个最接近的元素 给定一个排序好的数组,两个整数 k 和 x,从数组中找到最靠近 x(两数之差最小)的 k 个数.返回的结果必须要是按升序排好的.如果有两个数与 x 的差值一样,优先选择数值较小的 ...