点此看题面

大致题意: 给你一个无向联通图,要求你求出这张图中从u开始的权值和最小的最短路径树的权值之和。

什么是最短路径树?

从\(u\)开始到任意点的最短路径与在原图中相比不变。

题解

既然要求最短路径,那么最容易想到的就是\(dijkstra\)和\(SPFA\)(毕竟Floyd的时间复杂度难以承受),又由于黄学长说能用\(dijkstra\)时尽量用\(dijkstra\),所以,我就打了一个堆优化的\(dijkstra\)开始乱搞。

其实,这道题目的思路真的挺简单的,只要朴素地做一遍\(dijkstra\),并在更新距离的过程中同时更新这个最短距离是从哪一条边得到的,就可以轻松求出这张图的最短路径树了。

代码

#include<bits/stdc++.h>
#define LL long long
#define N 300000
#define M 300000
using namespace std;
int n,m,u,ee=0,lnk[N+5]={0},vis[N+5]={0};
LL ans,used[N+5]={0},MIN[N+5]={0};
struct edge
{
int to,nxt;
LL val;
}e[2*M+5];
typedef pair<LL,int> Pr;
priority_queue<Pr,vector<Pr>,greater<Pr> > q;//用优先队列(即堆)来优化dijkstra
void add(int x,int y,int z)
{
e[++ee].to=y,e[ee].nxt=lnk[x],e[ee].val=z,lnk[x]=ee;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1,x,y,z;i<=m;i++)
scanf("%d%d%d",&x,&y,&z),add(x,y,z),add(y,x,z);
scanf("%d",&u);
q.push(make_pair(0,u));//初始化,将u点放入堆中
while(!q.empty())
{
int k=q.top().second;q.pop();
if(vis[k]) continue;else vis[k]=1;//判断该点是否被访问过
for(int i=lnk[k];i;i=e[i].nxt)
if(!vis[e[i].to]&&(!MIN[e[i].to]||MIN[k]+e[i].val<MIN[e[i].to]||(MIN[k]+e[i].val==MIN[e[i].to]&&e[i].val<used[e[i].to]))) ans-=used[e[i].to]-e[i].val,MIN[e[i].to]=MIN[k]+(used[e[i].to]=e[i].val),q.push(make_pair(MIN[e[i].to],e[i].to));//一个麻烦的更新过程,同时更新最短路和最短路从哪一条边得来,并同时更新ans
}
return printf("%lld",ans),0;
}

【51nod1443】路径和树(堆优化dijkstra乱搞)的更多相关文章

  1. 【BZOJ3073】[Pa2011]Journeys 线段树+堆优化Dijkstra

    [BZOJ3073][Pa2011]Journeys Description Seter建造了一个很大的星球,他准备建造N个国家和无数双向道路.N个国家很快建造好了,用1..N编号,但是他发现道路实在 ...

  2. 【bzoj4016】[FJOI2014]最短路径树问题 堆优化Dijkstra+DFS树+树的点分治

    题目描述 给一个包含n个点,m条边的无向连通图.从顶点1出发,往其余所有点分别走一次并返回. 往某一个点走时,选择总长度最短的路径走.若有多条长度最短的路径,则选择经过的顶点序列字典序最小的那条路径( ...

  3. 堆优化Dijkstra计算最短路+路径计数

    今天考试的时候遇到了一道题需要路径计数,然而蒟蒻从来没有做过,所以在考场上真的一脸懵逼.然后出题人NaVi_Awson说明天考试还会卡SPFA,吓得我赶紧又来学一波堆优化的Dijkstra(之前只会S ...

  4. 【bzoj3073】[Pa2011]Journeys 线段树优化建图+堆优化Dijkstra

    题目描述 Seter建造了一个很大的星球,他准备建造N个国家和无数双向道路.N个国家很快建造好了,用1..N编号,但是他发现道路实在太多了,他要一条条建简直是不可能的!于是他以如下方式建造道路:(a, ...

  5. BZOJ5415[Noi2018]归程——kruskal重构树+倍增+堆优化dijkstra

    题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 n 个节点.m 条边的无向连通图(节点的编号从 1 至 n).我们依次用 l,a 描述一条边的长度.海 ...

  6. BZOJ 3040 最短路 (堆优化dijkstra)

    这题不是裸的最短路么?但是一看数据范围就傻了.点数10^6,边数10^7.这个spfa就别想了(本来spfa就是相当不靠谱的玩意),看来是要用堆优化dijkstra了.但是,平时写dijkstra时为 ...

  7. 配对堆优化Dijkstra算法小记

    关于配对堆的一些小姿势: 1.配对堆是一颗多叉树. 2.包含优先队列的所有功能,可用于优化Dijkstra算法. 3.属于可并堆,因此对于集合合并维护最值的问题很实用. 4.速度快于一般的堆结构(左偏 ...

  8. 【bzoj1097】[POI2007]旅游景点atr 状压dp+堆优化Dijkstra

    题目描述 FGD想从成都去上海旅游.在旅途中他希望经过一些城市并在那里欣赏风景,品尝风味小吃或者做其他的有趣的事情.经过这些城市的顺序不是完全随意的,比如说FGD不希望在刚吃过一顿大餐之后立刻去下一个 ...

  9. PAT-1030 Travel Plan (30 分) 最短路最小边权 堆优化dijkstra+DFS

    PAT 1030 最短路最小边权 堆优化dijkstra+DFS 1030 Travel Plan (30 分) A traveler's map gives the distances betwee ...

随机推荐

  1. 解读人:朱月琴,Hippocampal proteomic alteration in triple transgenic mouse model of Alzheimer’s disease and implication of PINK 1 regulation in donepezil treatment

    文章中文名:阿尔茨海默病三联转基因小鼠模型的海马蛋白质组学改变及Donepezil治疗中PINK 1调节的意义 发表时间:(2019年4月) IF:3.95 单位:澳门大学,威斯康星大学,暨南大学,广 ...

  2. Redis内核原理及读写一致企业级架构深入剖析1-综合组件环境实战

    1 Redis 工作模型 redis实际上是个单线程工作模型,其拥有较多的数据结构,并支持丰富的数据操作,redis目前是原生支持cluster模式.如果需要缓存能够支持更复杂的结构和操作,基于以上原 ...

  3. input 上传文件的判断

    <html> <head> <meta charset='utf-8'> <meta name="viewport" content=&q ...

  4. 瓷砖覆盖(状压DP)

    题目描述 Description 用1*2的瓷砖去铺N*M的地面,问有多少种铺法 输入描述 Input Description 第一行有两数n,m.表示地面的大小 输出描述 Output Descri ...

  5. oracle(三)

    /****************************表空间 start****************************/ --表空间的作用 /** 1.决定数据库实体的空间分配 2.设置 ...

  6. spark_运行spark-shell报错_javax.jdo.JDOFatalDataStoreException: Unable to open a test connection to the given database.

    error: # ./spark-shell Caused by: javax.jdo.JDOFatalDataStoreException: Unable to open a test connec ...

  7. 读取properties和xml中配置文件的值

    五种方式让你在java中读取properties文件内容不再是难题 在java中读取properties和xml文件中的方法:https://www.cnblogs.com/ConfidentLiu/ ...

  8. py---------模块和包

    单独导入包 单独导入包名称时不会导入包中所有包含的所有子模块,如 #在与glance同级的test.py中 import glance glance.cmd.manage.main() ''' 执行结 ...

  9. linux下.exe文件的安装与使用

    1安装wine 2 安装exe软件:下载应用软件.exe,然后点击右键用wine打开/或者在终端中wine 应用软件.exe即能安装. 卸载exe可以右键点击安装软件中uninstall.exe-用w ...

  10. 如何设计企业移动应用 by宋凯

    移动应用设计内部培训 by宋凯 企业移动应用的特点:简约.效率.增强ERP与环境的结合.及时.安全.企业内社交. 一句话定义你的移动应用:然后围绕这句话来设计你的APP. 一:如何定义你的应用: 1, ...