MapReduce实现协同过滤中每个用户看过的项目集合
一、知识准备
hadoop自带的例子在
D:\HADOOP_HOME\hadoop-2.6.4\share\hadoop\mapreduce\sources\hadoop-mapreduce-examples 2.6.0-source.jar
我记得当年面试的时候就问中位数的问题不过是数据流下的中位数,一问便知是否搞过hadoop。
二、代码实现
2.1 Mapper
package cf; import java.io.IOException; import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; public class MovieMapper1 extends Mapper<LongWritable, Text, Text, Text> { public void map(LongWritable ikey, Text ivalue, Context context)
throws IOException, InterruptedException {
String[] values = ivalue.toString().split(",");
if (values.length!=2) {
return ;
}
String userID = values[0];
String itemID = values[1];
context.write(new Text(userID), new Text(itemID));
}
}
2.2 Reducer
package cf; import java.io.IOException; import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; public class MovieReduce1 extends Reducer<Text, Text, Text, Text> { public void reduce(Text _key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {
// process values
StringBuffer sb = new StringBuffer();
for (Text val : values) {
sb.append(val.toString());
sb.append(",");
}
//value不能直接用StringBuffer 必须转换为String
context.write(_key,new Text(sb.toString()));
} }
2.3 Main
package cf; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class UserItemSetMapReduce { public static void main(String[] args) throws Exception{ Configuration conf = new Configuration();
Job job = new Job(conf, "CFItemSet");
job.setJarByClass(UserItemSetMapReduce.class);
job.setMapperClass(MovieMapper1.class);
//job.setCombinerClass(cls);
// job.setCombinerClass(MovieReduce1.class);
job.setReducerClass(MovieReduce1.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job,new Path("hdfs://192.168.58.180:8020/cf/userItem.txt"));
//InputPath(job, new Path(otherArgs[0]));
//直接写到cf会提示已存在cf,我写成uIO.ttx,以为内容会写入到txt,然没有,默认他是文件夹
FileOutputFormat.setOutputPath(job,new Path("hdfs://192.168.58.180:8020/cf/userItemOut.txt"));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
三、结果分析
3.1 输入

3.2 输出

查看结果发现输出文件的分隔符默认是tab,‘\t’,同时相对于输入文件来说输出结果是逆着的,类似沾,莫非context就是这样的先进后出、
3.3日志分析
只列出了主要部分的日志
DEBUG - PrivilegedAction as:hxsyl (auth:SIMPLE) from:org.apache.hadoop.mapreduce.Job.getCounters(Job.java:765)
INFO - Counters: 38
File System Counters
FILE: Number of bytes read=538
FILE: Number of bytes written=509366
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=106
HDFS: Number of bytes written=37
HDFS: Number of read operations=13
HDFS: Number of large read operations=0
HDFS: Number of write operations=4
Map-Reduce Framework
Map input records=11
Map output records=11
Map output bytes=44
Map output materialized bytes=72
Input split bytes=107
Combine input records=0
Combine output records=0
Reduce input groups=5
Reduce shuffle bytes=72
Reduce input records=11
Reduce output records=5
Spilled Records=22
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=3
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=462422016
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=53
File Output Format Counters
Bytes Written=37
DEBUG - PrivilegedAction as:hxsyl (auth:SIMPLE) from:org.apache.hadoop.mapreduce.Job.updateStatus(Job.java:323)
DEBUG - stopping client from cache: org.apache.hadoop.ipc.Client@37afeb11
DEBUG - removing client from cache: org.apache.hadoop.ipc.Client@37afeb11
DEBUG - stopping actual client because no more references remain: org.apache.hadoop.ipc.Client@37afeb11
DEBUG - Stopping client
DEBUG - IPC Client (521081105) connection to /192.168.58.180:8020 from hxsyl: closed
DEBUG - IPC Client (521081105) connection to /192.168.58.180:8020 from hxsyl: stopped, remaining connections 0
大神分析一下如何执行的,看着日志....Map如何输入的,执行几次等。
MapReduce实现协同过滤中每个用户看过的项目集合的更多相关文章
- 共轭梯度法求解协同过滤中的 ALS
协同过滤是一类基于用户行为数据的推荐方法,主要是利用已有用户群体过去的行为或意见来预测当前用户的偏好,进而为其产生推荐.能用于协同过滤的算法很多,大致可分为:基于最近邻推荐和基于模型的推荐.其中基于最 ...
- 【Machine Learning】Mahout基于协同过滤(CF)的用户推荐
一.Mahout推荐算法简介 Mahout算法框架自带的推荐器有下面这些: l GenericUserBasedRecommender:基于用户的推荐器,用户数量少时速度快: l GenericI ...
- 协同过滤中的Grey Sheep问题
寒神解释:某些用户的倾向性和品味没有一致性,比较散.因此在协同过滤这种算法里,没办法和某个group有很高的相似/一致度,推荐会失效. 我理解是寻找邻居时候计算得到的相似度和其他用户相似度都非常小,或 ...
- Music Recommendation System with User-based and Item-based Collaborative Filtering Technique(使用基于用户及基于物品的协同过滤技术的音乐推荐系统)【更新】
摘要: 大数据催生了互联网,电子商务,也导致了信息过载.信息过载的问题可以由推荐系统来解决.推荐系统可以提供选择新产品(电影,音乐等)的建议.这篇论文介绍了一个音乐推荐系统,它会根据用户的历史行为和口 ...
- Slope one—个性化推荐中最简洁的协同过滤算法
Slope One 是一系列应用于 协同过滤的算法的统称.由 Daniel Lemire和Anna Maclachlan于2005年发表的论文中提出. [1]有争议的是,该算法堪称基于项目评价的non ...
- 推荐系统-协同过滤在Spark中的实现
作者:vivo 互联网服务器团队-Tang Shutao 现如今推荐无处不在,例如抖音.淘宝.京东App均能见到推荐系统的身影,其背后涉及许多的技术.本文以经典的协同过滤为切入点,重点介绍了被工业界广 ...
- 基于用户的协同过滤电影推荐user-CF python
协同过滤包括基于物品的协同过滤和基于用户的协同过滤,本文基于电影评分数据做基于用户的推荐 主要做三个部分:1.读取数据:2.构建用户与用户的相似度矩阵:3.进行推荐: 查看数据u.data 主要用到前 ...
- MapRedcue的demo(协同过滤)
MapRedcue的演示(协同过滤) 做一个关于电影推荐.你于你好友之间的浏览电影以及电影评分的推荐的协同过滤. 百度百科: 协同过滤简单来说是利用某兴趣相投.拥有共同经验之群体的喜好来推荐用户感兴趣 ...
- [Recommendation System] 推荐系统之协同过滤(CF)算法详解和实现
1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web ...
随机推荐
- Java核心技术点之注解
本博文是对Java中注解相关知识点的简单总结,若有叙述不清晰或是不准确的地方,希望大家可以指正,谢谢大家:) 一.什么是注解 我们大家都知道Java代码中使用注释是为了向以后阅读这份代码的人解释说明一 ...
- Spring TestContext测试框架搭建
同样是测试,JUnit和Spring TestContext相比,Spring TestContext优势如下: 1.Spring TestContext可以手动设置测试事务回滚,不破坏数据现场 2. ...
- WP7开发 Sqlite数据库的使用 解决Unable open the database
WP7本身不支持Sqlite数据库,但我们可以添加第三方组件让它支持Sqlite. 首先在项目中添加引用Community.CsharpSqlite.WP.dll,我会放后面让大家下载,我下了有几天了 ...
- 前端见微知著番外篇:GIT舍我其谁?
在上一篇中,我们讲到了利用纯UI的软件如何实现代码的提交.但是在MAC机器上,是没有turtoiseGit这类软件的,所以利用命令行的方式就是我们的首选了. 下面我们来描述两种主要的Git使用场景: ...
- 机械大楼电梯控制项目软件 -- github团队组建
目前在Github网站上建立了机械大楼电梯控制项目软件的软件仓库(Repository),提供了软件功能需求说明文档和Automation Studio程序模板.地址为 https://github. ...
- java实战之解析xml
在java中解析xml有现成的包提供方法,常用的有四类:Dom,JDom,Sax以及Dom4j.其中前者是java中自带的,后三者需要大家从开源诸如sourceforge这样的网站下载jar包,然后在 ...
- TensorFlow的开源与Hadoop的开源
最近看TensorFlow代码的时候,用Git pull下来最新的master一看,哇好多的更新,然后点击去之前看到一半的cc文件继续看,好多地方都改变了.但是一看Git log,有好多巨大的comm ...
- 深入理解python的yield和generator
原文发表在我的博客主页,转载请注明出处 前言 没有用过的东西,没有深刻理解的东西很难说自己会,而且被别人一问必然破绽百出.虽然之前有接触过python协程的概念,但是只是走马观花,这两天的一次交谈中, ...
- word2vec使用说明补充(google工具包)
[本文转自http://ir.dlut.edu.cn/NewsShow.aspx?ID=253,感谢原作者] word2vec是一个将单词转换成向量形式的工具.可以把对文本内容的处理简化为向量空间中的 ...
- php file_get_contents失败[function.file-get-contents]: failed to open stream: HTTP request failed!解决
在使用file_get_contents方法来获取远程文件时会出现 [function.file-get-contents]: failed to open stream: HTTP request ...