首先将坐标离散化,因为区间互不包含,可以理解为对于每个起点输出最少需要多少个战士。

将环倍长,破环成链,设$f[i]$表示区间左端点不超过$i$时右端点的最大值,可以通过$O(n)$递推求出。

那么如果将$f[i]$看成$i$的祖先的话,它实际上形成了一棵以$2n$为根的树。

首先暴力计算出1号点的答案$t$,设$L=t-1$。

然后dfs这棵树,用一个栈按深度依次保存每个点到根路径上的点。

对于一个点,只需要从$L$开始暴力枚举答案,然后$O(1)$检验即可。

因为每个点的答案相差不超过1,所以除去离散化后,整个算法的时间复杂度为$O(n)$。

#include<cstdio>
#include<algorithm>
#define N 400010
int n,m,i,x,y,L,a[N/2][2],b[N],st[N/2],f[N*2],g[N*2],nxt[N*2],q[N*2],t,ans[N];
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
inline int lower(int x){
int l=1,r=m,mid,t;
while(l<=r)if(b[mid=(l+r)>>1]<=x)l=(t=mid)+1;else r=mid-1;
return t;
}
inline void up(int&x,int y){if(x<y)x=y;}
void dfs(int x){
q[++t]=x;
if(x<=m)for(int i=L;;i++)if(q[t-i]>=x+m){ans[x]=i;break;}
for(int i=g[x];i;i=nxt[i])dfs(i);
t--;
}
int main(){
read(n),read(m);
for(m=0,i=1;i<=n;i++)read(a[i][0]),read(a[i][1]),b[++m]=a[i][0],b[++m]=a[i][1];
for(std::sort(b+1,b+m+1),i=1;i<=n;i++){
st[i]=x=lower(a[i][0]),y=lower(a[i][1]);
if(x<y)up(f[x],y),up(f[x+m],y+m);
else up(f[1],y),up(f[x],y+m),up(f[x+m],m+m);
}
for(i=1;i<=m+m;i++)up(f[i],f[i-1]);
for(i=1;i<m+m;i++)nxt[i]=g[f[i]],g[f[i]]=i;
for(L=-1,i=1;i<=m;i=f[i])L++;
dfs(m+m);
for(i=1;i<=n;i++)printf("%d ",ans[st[i]]);
return 0;
}

  

BZOJ4444 : [Scoi2015]国旗计划的更多相关文章

  1. [BZOJ4444][SCOI2015]国旗计划(倍增)

    链上是经典贪心问题,将线段全按左端点排序后把点全撒在线段右端点上.这里放到环上,倍长即可. 题目保证不存在区间包含情况,于是有一种暴力做法,先将战士的管辖区间按左端点从小到大排序,对于询问x,从x战士 ...

  2. BZOJ4444 SCOI2015国旗计划(贪心+倍增)

    链上问题是一个经典的贪心.于是考虑破环成链,将链倍长.求出每个线段右边能作为后继的最远线段,然后倍增即可. #include<iostream> #include<cstdio> ...

  3. 2019.03.26 bzoj4444: [Scoi2015]国旗计划(线段树+倍增)

    传送门 题意简述:现在给你一个长度为mmm的环,有nnn条互不包含的线段,问如果强制选第iii条线段至少需要用几条线段覆盖这个环,注意用来的覆盖的线段应该相交,即[1,3],[4,5][1,3],[4 ...

  4. [BZOJ4444][SCOI2015]国旗计划-[ST表]

    Description 传送门 Solution 说真的这道题在场上没做出来的我必定是脑子有洞.. 我们用st表记录以某个位置开始,派了1<<j个战士能到达的最远位置. 由于边境线是一圈, ...

  5. 【BZOJ4444】[Scoi2015]国旗计划 双指针+倍增

    [BZOJ4444][Scoi2015]国旗计划 Description A国正在开展一项伟大的计划——国旗计划.这项计划的内容是边防战士手举国旗环绕边境线奔袭一圈.这项计划需要多名边防战士以接力的形 ...

  6. [BZOJ4444] [Luogu 4155] [LOJ 2007] [SCOI2015]国旗计划(倍增)

    [BZOJ4444] [Luogu 4155] [LOJ 2007] [SCOI2015]国旗计划(倍增) 题面 题面较长,略 分析 首先套路的断环为链.对于从l到r的环上区间,若l<=r,我们 ...

  7. [SCOI2015]国旗计划[Wf2014]Surveillance

    [SCOI2015]国旗计划 A国正在开展一项伟大的计划——国旗计划.这项计划的内容是边防战士手举国旗环绕边境线奔袭一圈.这 项计划需要多名边防战士以接力的形式共同完成,为此,国土安全局已经挑选了N名 ...

  8. 4444: [Scoi2015]国旗计划

    4444: [Scoi2015]国旗计划 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 485  Solved: 232 Description A国 ...

  9. [luogu] P4155 [SCOI2015]国旗计划(贪心)

    P4155 [SCOI2015]国旗计划 题目描述 A 国正在开展一项伟大的计划 -- 国旗计划.这项计划的内容是边防战士手举国旗环绕边境线奔袭一圈.这项计划需要多名边防战士以接力的形式共同完成,为此 ...

随机推荐

  1. Android开发环境搭建:离线安装ADT插件和安装SDK

    一.准备 在线安装SDK较慢,在此我选择了离线安装,所需要的工具下载:http://yun.baidu.com/share/link?shareid=2286446004&uk=2000812 ...

  2. 20145206《Java程序设计》第10周学习总结

    20145206 <Java程序设计>第10周学习总结 博客学习内容总结 什么是网络编程 网络编程就是在两个或两个以上的设备(例如计算机)之间传输数据.程序员所作的事情就是把数据发送到指定 ...

  3. CLR via C#(16)--泛型

    泛型就像是一个模板,常常定义一些通用的算法,具体调用时再替换成实际的数据类型,提高了代码的可重用性. 一.初识泛型 1. 简单实例 以最常用的FCL中的泛型List<T >为例: stat ...

  4. 多线线程async与await关键字

    创建线程 //这里面需要注意的是,创建Thread的实例之后,需要手动调用它的Start方法将其启动. //但是对于Task来说,StartNew和Run的同时,既会创建新的线程,并且会立即启动它. ...

  5. Delphi中record和packed record的区别

    转载:http://blog.csdn.net/rznice/article/details/6566978 第一种不带packed关键字的结构体表明编译器编译时要求进行字对齐. 而第二种带packe ...

  6. Solr入门之(4)配置文件solr.xml

    <?xml version="1.0" encoding="UTF-8" ?> <!-- This is an example of a si ...

  7. JS常用语句

    JavaScript常用语句 1.document.write("");    输出语句 2.JS中的注释为   // 3.传统的HTML文档顺序是:     document-& ...

  8. zTree v3.5配置

    页面 <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ZTree3.aspx ...

  9. 您的 PHP 似乎没有安装运行 WordPress 所必需的 MySQL 扩展”处理方法

    转自:http://www.xuebuyuan.com/1549022.html 这已经是一个老掉牙的问题了,部分人使用自己的服务器安装WordPress程序之后,会出现“您的 PHP 似乎没有安装运 ...

  10. ARM寻址方式,王明学learn

    ARM寻址方式 所谓寻址方式就是处理器根据指令中给出的信息来找到指令所需操作数的方式. 一.立即数寻址 立即数寻址,是一种特殊的寻址方式,操作数本身就在指令中给出,只要取出指令也就取到了操作数.这个操 ...