【BZOJ-4518】征途 DP + 斜率优化
4518: [Sdoi2016]征途
Time Limit: 10 Sec Memory Limit: 256 MB
Submit:
230 Solved: 156
[Submit][Status][Discuss]
Description
Input
Output
一个数,最小方差乘以 m^2 后的值
Sample Input
1 2 5 8 6
Sample Output
HINT
1≤n≤3000,保证从 S 到 T 的总路程不超过 30000
Source
Solution
DP + 斜率优化
首先对所求的东西进行一下化简:
即最后的结果为$m*\sum_{i=1}^{m}x_{i}^{2}-\sum_{i=1}^{m}x_{i}$其中$x_{i}$表示第$i$天走的路段总和
很显然有$\sum_{i=1}^{m}x_{i}$为定值,那么只需要最小化$\sum_{i=1}^{m}x_{i}^{2}$
那么考虑$f[i][j]$表示$i$天共走了$j$段路的最优
首先可以有某天停滞不前,那么很容易发现,若要最优,则不可能停滞不前
可以得到转移$dp[i][j]=min(dp[i][j],dp[i-1][j-k]+(sum[j]-sum[j-k])^{2}),k=1-j$
那么固定下$i$后,很显然对于$j$是满足斜率优化的
那么化简就可以得到$\frac{dp[i-1][k_{1}]+sum[k_{1}]^{2}-dp[i-1][k_{2}]-sum[k_{2}]^{2}}{sum[k_{1}]-sum[k_{2}]}<2*sum[j]$
那么斜率优化即可,自己还打了个滚动数组,不过貌似毫无意义
Code
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
inline int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 3010
int n,m; int dis[maxn],que[maxn],l,r;
long long dp[][maxn],sum[maxn];
long long pf(long long x) {return x*x;}
inline double slope(int t,int i,int j)
{
return (double)(dp[t][i]+pf(sum[i])-dp[t][j]-pf(sum[j]))/(double)(sum[i]-sum[j]);
}
int main()
{
n=read(),m=read();
for (int i=; i<=n; i++) dis[i]=read(),sum[i]=sum[i-]+dis[i];
memset(dp,,sizeof(dp)); dp[][]=;
for (int t=,i=; i<=m; i++,t^=,l=r=)
for (int tmp,j=; j<=n; j++)
{
while (l<r && slope(t^,que[l],que[l+])<(sum[j]<<)) l++;
tmp=que[l];
dp[t][j]=pf(sum[j]-sum[tmp])+dp[t^][tmp];
while (l<r && slope(t^,que[r],que[r-])>slope(t^,que[r],j)) r--;
que[++r]=j;
}
printf("%lld\n",m*dp[m&][n]-pf(sum[n]));
return ;
}
在BZOJ上好像排名不高啊....
【BZOJ-4518】征途 DP + 斜率优化的更多相关文章
- BZOJ - 4518: 征途(斜率优化,求N数划分为M区间的最小方差)
注意初始化...等等补 #include<bits/stdc++.h> #define ll long long using namespace std; ; int q[maxn],he ...
- BZOJ.4072.[SDOI2016]征途(DP 斜率优化)
题目链接 题目要求使得下面这个式子最小(\(\mu=\frac{\sum_{i=1}^ma_i}{m}\)是平均数,\(a_i\)为第\(i\)段的和): \[\frac{\sum_{i-1}^m(\ ...
- BZOJ 3156: 防御准备( dp + 斜率优化 )
dp(i)表示处理完[i,n]且i是放守卫塔的最小费用. dp(i) = min{dp(j) + (j-i)(j-i-1)/2}+costi(i<j≤N) 然后斜率优化 ------------ ...
- BZOJ4518: [Sdoi2016]征途(dp+斜率优化)
Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1875 Solved: 1045[Submit][Status][Discuss] Descript ...
- 【BZOJ】1096: [ZJOI2007]仓库建设(dp+斜率优化)
http://www.lydsy.com/JudgeOnline/problem.php?id=1096 首先得到dp方程(我竟然自己都每推出了QAQ)$$d[i]=min\{d[j]+cost(j+ ...
- BZOJ 1096: [ZJOI2007]仓库建设(DP+斜率优化)
[ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在 ...
- 【BZOJ-3437】小P的牧场 DP + 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 705 Solved: 404[Submit][Status][Discuss ...
- BZOJ 1767] [Ceoi2009] harbingers (斜率优化)
[BZOJ 1767] [Ceoi2009] harbingers (斜率优化) 题面 给定一颗树,树中每个结点有一个邮递员,每个邮递员要沿着唯一的路径走向capital(1号结点),每到一个城市他可 ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
随机推荐
- vijos P1448 校门外的树
描述 校门外有很多树,有苹果树,香蕉树,有会扔石头的,有可以吃掉补充体力的--如今学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的树,现有两个操作:\(K=1\),读入\(l, ...
- XML Data Type Methods(一)
XML Data Type Methods(一) /*XML Data Type Methods: 1.The query('XQuery') method retrieves(vt.检索,重新得到) ...
- NFine的后台源码
Chloe官网及基于NFine的后台源码毫无保留开放 扯淡 经过不少日夜的赶工,Chloe 的官网于上周正式上线.上篇博客中LZ说过要将官网以及后台源码都会开放出来,为了尽快兑现我说过的话,趁周末 ...
- Linux 信号详解六(可靠信号与不可靠信号)
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h&g ...
- Struts2、Spring MVC4 框架下的ajax统一异常处理
本文算是struts2 异常处理3板斧.spring mvc4:异常处理 后续篇章,普通页面出错后可以跳到统一的错误处理页面,但是ajax就不行了,ajax的本意就是不让当前页面发生跳转,仅局部刷新, ...
- java: ant 脚本示例
<?xml version="1.0" encoding="UTF-8"?> <!--basedir是从build.xml所在的目录为基础算起 ...
- .html 、.htm 、 .shtml 以及 .shtm 四种扩展名的文件区别
新增了一个分类,叫做 Personals,中文我把它解释成 "个人恶趣味",这里将记载一些对工作无关紧要,但是个人又一时有兴趣了解的东西. 今天要讲的是如题的 4 种扩展文件的区别 ...
- Android系统启动分析(Init->Zygote->SystemServer->Home activity)
整个Android系统的启动分为Linux Kernel的启动和Android系统的启动.Linux Kernel启动起来后,然后运行第一个用户程序,在Android中就是init程序. ------ ...
- nios II--实验3——led 100M硬件部分
led_100M 硬件开发 新建原理图 参照实验二(led) QSys调用模块 参照实验二(led) 原理图添加IP模块 参照实验二(led),在调用PLL的时候需要修改系统和SDRAM的时钟频率为1 ...
- md5加密31位
今天将其它服务器里的用户数据导入到新的系统数据库中 出现密码不匹配情况 查看原来数据库中密码得到结果位: 原服务器密码 明文 正确32位密闻 67b14728ad9902aecba32e22fa4f6 ...