【HDU 1542】Atlantis(线段树+离散化,矩形面积并)
求矩形面积并,离散化加线段树。
扫描线法:
用平行x轴的直线扫,每次ans+=(下一个高度-当前高度)*当前覆盖的宽度。
#include<algorithm>
#include<cstdio>
#include<cstring>
#define dd double
#define ll long long
#define N 201
using namespace std;
struct P{dd s,e,h;int f;}p[N];
struct Tree{dd sum;int c;}t[N<<];
dd a,b,c,d,x[N],ans;
int n,m,num;
int cmp(const P &a,const P &b){
return a.h<b.h;
}
void pushUp(ll rt,ll l,ll r){
if(t[rt].c)t[rt].sum=x[r+]-x[l];//r+1是因为节点[l,r]表示区间[x[l],x[r+1]]。
else if(l==r)t[rt].sum=;
else t[rt].sum=t[rt<<].sum+t[rt<<|].sum;
}
void update(ll s,ll e,ll rt,ll l,ll r,ll v){
if(s<=l&&r<=e) t[rt].c+=v;
else {
if(l>e||r<s)return;
ll m=l+r>>;
update(s,e,rt<<,l,m,v);
update(s,e,rt<<|,m+,r,v);
}
pushUp(rt,l,r);
}
int main()
{
while(scanf("%d",&n),n){
int k=;
for(int i=;i<n;i++){
scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
x[++k]=a,p[k]=(P){a,c,b,};
x[++k]=c,p[k]=(P){a,c,d,-};
}
sort(x+,x++k);
sort(p+,p++k,cmp);
m=;
for(int i=;i<=k;i++)
if(x[i]!=x[i-])x[m++]=x[i];
ans=;
for(int i=;i<=k;i++){//共k条线段,每次计算p[i].h到p[i+1].h之间的面积,第k次相当于清空所有,酱就不用初始化线段树了。
int l=lower_bound(x,x+m,p[i].s)-x;
int r=lower_bound(x,x+m,p[i].e)-x-;//r-1同上原因
update(l,r,,,m-,p[i].f);
ans+=t[].sum*(p[i+].h-p[i].h);
}
printf("Test case #%d\nTotal explored area: %.2lf\n\n",++num,ans);
}
return ;
}
另一种方法还是线段树,这里扫描线用的是平行y轴的直线,每次增加的面积是当前扫描的竖线所在的高度区间的最后一次的x与当前x的差值乘上区间的高度。所以每次增加的不一定是一个矩形,而是多个矩形并。
#include<cstdio>
#include<algorithm>
#define dd double
using namespace std;
#define N 201
struct P{dd x,y1,y2;int f;}p[N];
struct TREE{dd y1,y2,x;int c,f;}tree[N<<];
dd x1,y1,x2,y2,y[N];
int n,k,num;
int cmp(const P &a,const P &b){
return a.x<b.x;
}
void build(int i,int l,int r){
tree[i].c=tree[i].f=;
tree[i].y1=y[l];//直接将线段树节点代表的区间存在线段树里
tree[i].y2=y[r];
if(l+==r){
tree[i].f=;
return;
}
int mk=(l+r)>>;
build(i<<,l,mk);
build(i<<|,mk,r);
}
dd insert(int i,dd x,dd l,dd r,int flag){
if(r<=tree[i].y1||l>=tree[i].y2)
return ;
if(tree[i].f){//离散后的一个最小区间,叶子节点
dd ans;
if(tree[i].c>)//全覆盖
ans=(x-tree[i].x)*(tree[i].y2-tree[i].y1);//(当前x-该区间最后的x)*区间高度
else
ans=;
tree[i].x=x;//该区间最新的x
tree[i].c+=flag;//更新覆盖
return ans;
}
return insert(i<<,x,l,r,flag)+insert(i<<|,x,l,r,flag);
}
int main(){
while(scanf("%d",&n),n){
k=;
for(int i=;i<=n;i++){
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
y[++k]=y1,p[k]=(P){x1,y1,y2,};
y[++k]=y2,p[k]=(P){x2,y1,y2,-};
}
sort(y+,y+k+);
sort(p+,p+k+,cmp);
//没有去重,其实数量少,没必要。
build(,,k);
dd ans=;
for(int i=;i<=k;i++)
ans+=insert(,p[i].x,p[i].y1,p[i].y2,p[i].f);
printf("Test case #%d\nTotal explored area: %.2f\n\n",++num,ans);
}
return ;
}
【HDU 1542】Atlantis(线段树+离散化,矩形面积并)的更多相关文章
- POJ 1151 / HDU 1542 Atlantis 线段树求矩形面积并
题意:给出矩形两对角点坐标,求矩形面积并. 解法:线段树+离散化. 每加入一个矩形,将两个y值加入yy数组以待离散化,将左边界cover值置为1,右边界置为2,离散后建立的线段树其实是以y值建的树,线 ...
- POJ 1151 Atlantis 线段树求矩形面积并 方法详解
第一次做线段树扫描法的题,网搜各种讲解,发现大多数都讲得太过简洁,不是太容易理解.所以自己打算写一个详细的.看完必会o(∩_∩)o 顾名思义,扫描法就是用一根想象中的线扫过所有矩形,在写代码的过程中, ...
- HDU 1542.Atlantis-线段树求矩形面积并(离散化、扫描线/线段树)-贴模板
好久没写过博客了,这学期不是很有热情去写博客,写过的题也懒得写题解.现在来水一水博客,写一下若干年前的题目的题解. Atlantis Time Limit: 2000/1000 MS (Java/Ot ...
- HDU 1542 Atlantis(线段树面积并)
描述 There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. S ...
- HDU 1542 Atlantis (线段树 + 扫描线 + 离散化)
Atlantis Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- HDU 1542 - Atlantis - [线段树+扫描线]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1542 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...
- HDU 1542 Atlantics 线段树+离散化扫描
将 x 轴上的点进行离散化,扫描线沿着 y 轴向上扫描 每次添加一条边不断找到当前状态有效边的长度 , 根据这个长度和下一条边形成的高度差得到一块合法的矩形的面积 #include<iostre ...
- hdu 1542 Atlantis(线段树,扫描线)
Atlantis Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- hdu 1542 Atlantis (线段树扫描线)
大意: 求矩形面积并. 枚举$x$坐标, 线段树维护$[y_1,y_2]$内的边是否被覆盖, 线段树维护边时需要将每条边挂在左端点上. #include <iostream> #inclu ...
- HDU 1255 覆盖的面积 (扫描线 线段树 离散化 矩形面积并)
题目链接 题意:中文题意. 分析:纯手敲,与上一道题目很相似,但是刚开始我以为只是把cnt>=0改成cnt>=2就行了,. 但是后来发现当当前加入的线段的范围之前 还有线段的时候就不行了, ...
随机推荐
- eclipse 编译android程序 编译错误
windows->show view -> problems, 这个窗口的内容即为 编译错误的内容.
- 渗透中Necat的另类用法
Necat 是一个伟大而实用的用于 TCP 和 UPD 网络连接协议的读写程序.同时 Necat 也被誉为网络中的瑞士军刀,在许多黑客教程中 Necat 也被广泛使用.Necat 最常见用途是设置反向 ...
- 协议的分用以及wireshark对协议的识别
在TCP/IP详解一书中谈到了协议的分用,书中的图1-8如上.图1-8可以很好地解释在互联网的分层结构中,底层的协议头是如何承载上层的不同的协议的.对于链路层而言,以太网首部中有不同帧类型用于表示以太 ...
- OC中的指针
NSError *err = nil; NSError __strong **error = &err; //因为在oc中,通过* *err 创建的指针是用__strong修改的,所以要一致, ...
- Java 中包装类wrapped type之间以及和primitive type的比较
注意, 包装类的实例之间比较, 是不能直接用 == 的 public static void main(String[] args) { // TODO Auto-generated method s ...
- MySQL触发器如何正确使用
MySQL触发器如何正确使用 2010-05-18 15:58 佚名 博客园 字号:T | T 我们今天主要向大家介绍的是MySQL触发器进行正确使用,其中包括对MySQL触发器发器的语句创建,触发时 ...
- C#并行编程中的Parallel.Invoke
一.基础知识 并行编程:并行编程是指软件开发的代码,它能在同一时间执行多个计算任务,提高执行效率和性能一种编程方式,属于多线程编程范畴.所以我们在设计过程中一般会将很多任务划分成若干个互相独立子任务, ...
- oracle 分组排序函数
项目开发中,我们有时会碰到需要分组排序来解决问题的情况:1.要求取出按field1分组后,并在每组中按照field2排序:2.亦或更加要求取出1中已经分组排序好的前多少行的数据 这里通过一张表的示例和 ...
- opencv7-ml之svm
因为<opencv_tutorial>这部分只有两个例子,就先暂时介绍两个例子好了,在refman中ml板块有:统计模型.普通的贝叶斯分类器.KNN.SVM.决策树.boosting.随机 ...
- Windows 部署 Redis 群集
1,下载Redis for windows 的最新版本,解压到 c:\Redis 目录下备用https://github.com/MSOpenTech/redis/releases当前我使用的是 3. ...