首先我们列出转移矩阵$M$,$M_{i, j} = \frac {1 - \frac{p} {q}} {deg[i]}$(i,j之间有边)or $M_{i, j} = 0$(i,j之间没边)

则这个矩阵$M_{i, j}$表示的是站在某个点$i$,下一次走到$j$且没有爆炸的概率

我们再看$M^n_{i, j}$,表示的站在某个点$i$,走$n$步以后到达$j$且没有爆炸的概率

故$M^n$的第一列代表了$1$号点到其他所有点的概率,设为列向量$A_n$,则$A_n = M^n * B$,其中$B = (1, 0, 0, 0, ...)^T$

设第n步到各点且爆炸了的概率的列向量为$P_n$,则$P_n = \frac{p} {q} * A_n$

故答案列向量$Ans = \sum_{i = 0} ^ {+\infty} P_i$

把它展开:$Ans = \frac{p} {q} * (\sum_{i = 0} ^ {+\infty} M^i) * B$

由等比数列求和公式,$\sum_{i = 0} ^ {+\infty} M^i = \frac{I} {I - M} = (I - M)^{-1}$

故$Ans = \frac{p} {q} * (I - M)^{-1} * B$,即$(I- M) * Ans = \frac{p} {q} * B$

得到一个线性方程组,我们只要高斯消元即可

 /**************************************************************
Problem: 1778
User: rausen
Language: C++
Result: Accepted
Time:200 ms
Memory:2264 kb
****************************************************************/ #include <cstdio>
#include <cmath>
#include <algorithm> using namespace std;
typedef double lf;
const int N = ;
const int M = N * N; inline int read(); struct edge {
int next, to;
edge() {}
edge(int _n, int _t) : next(_n), to(_t) {}
} e[M]; int n, m, deg[N];
int first[N], tot;
lf P, a[N][N], ans[N]; inline void Add_Edges(int x, int y) {
e[++tot] = edge(first[x], y), first[x] = tot;
e[++tot] = edge(first[y], x), first[y] = tot;
++deg[x], ++deg[y];
} #define y e[x].to
inline void build_matrix() {
int p, x;
for (p = ; p <= n; ++p) {
for (x = first[p]; x; x = e[x].next)
a[p][y] = -(1.0 - P) / deg[y];
a[p][p] = ;
}
a[][n + ] = P;
}
#undef y void gauss(int n) {
int i, j, k;
lf tmp;
for (i = ; i <= n; ++i) {
for (k = i, j = i + ; j <= n; ++j)
if (fabs(a[j][i]) > fabs(a[k][i])) k = j;
for (j = i; j <= n + ; ++j) swap(a[i][j], a[k][j]);
for (k = i + ; k <= n; ++k)
for (tmp = -a[k][i] / a[i][i], j = i; j <= n + ; ++j)
a[k][j] += a[i][j] * tmp;
}
for (i = n; i; --i) {
for (j = i + ; j <= n; ++j)
a[i][n + ] -= a[i][j] * ans[j];
ans[i] = a[i][n + ] / a[i][i];
}
} int main() {
int i, j;
n = read(), m = read(), P = 1.0 * read() / read();
for (i = ; i <= m; ++i)
Add_Edges(read(), read());
build_matrix();
gauss(n);
for (i = ; i <= n; ++i)
printf("%.9lf\n", ans[i]);
return ;
} inline int read() {
static int x;
static char ch;
x = , ch = getchar();
while (ch < '' || '' < ch)
ch = getchar();
while ('' <= ch && ch <= '') {
x = x * + ch - '';
ch = getchar();
}
return x;
}

BZOJ1778 [Usaco2010 Hol]Dotp 驱逐猪猡的更多相关文章

  1. bzoj1778: [Usaco2010 Hol]Dotp 驱逐猪猡(概率DP+高斯消元)

    深夜肝题...有害身心健康QAQ 设f[i]为到达i的概率,d[i]为i的度数. 因为无限久之后炸弹爆炸的概率是1,所以最后在i点爆炸的概率实际上就是f[i]/sigma(f[]) 列出方程组 f[i ...

  2. 【BZOJ1778】[Usaco2010 Hol]Dotp 驱逐猪猡 期望DP+高斯消元

    [BZOJ1778][Usaco2010 Hol]Dotp 驱逐猪猡 Description 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300 ...

  3. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 [高斯消元 概率DP]

    1778: [Usaco2010 Hol]Dotp 驱逐猪猡 题意:一个炸弹从1出发p/q的概率爆炸,否则等概率走向相邻的点.求在每个点爆炸的概率 高斯消元求不爆炸到达每个点的概率,然后在一个点爆炸就 ...

  4. BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元

    BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...

  5. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡

    1778: [Usaco2010 Hol]Dotp 驱逐猪猡 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 563  Solved: 216[Submi ...

  6. 【bzoj1778】[Usaco2010 Hol]Dotp 驱逐猪猡 矩阵乘法+概率dp+高斯消元

    题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两 ...

  7. 【BZOJ1778】[Usaco2010 Hol]Dotp 驱逐猪猡

    题解: 网上有一种复杂的方法..好像复杂度并没有优势就没看 定义f[i]表示i的期望经过次数,f[i]=sigma{f[j]*p/q/du[j]}+(i==1); 然后高斯消元就可以了 最后求出来的f ...

  8. bzoj 1778 [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元)

    [题意] 炸弹从1开始运动,每次有P/Q的概率爆炸,否则等概率沿边移动,问在每个城市爆炸的概率. [思路] 设M表示移动一次后i->j的概率.Mk为移动k次后的概率,则有: Mk=M^k 设S= ...

  9. 【BZOJ】1778: [Usaco2010 Hol]Dotp 驱逐猪猡

    [题意]给定无向图,炸弹开始在1,在每个点爆炸概率Q=p/q,不爆炸则等概率往邻点走,求在每个点爆炸的概率.n<=300. [算法]概率+高斯消元 [题解]很直接的会考虑假设每个点爆炸的概率,无 ...

随机推荐

  1. CSS3 中border-image详解

    CSS3 border-image详解.应用及jQuery插件 一.border-image的兼容性 border-image可以说是CSS3中的一员大将,将来一定会大放光彩,其应用潜力真的是非常的惊 ...

  2. JS中的prototype///////////////////////////z

    JS中的phototype是JS中比较难理解的一个部分 本文基于下面几个知识点: 1 原型法设计模式 在.Net中可以使用clone()来实现原型法 原型法的主要思想是,现在有1个类A,我想要创建一个 ...

  3. 反射调用方法时的两种情况,走get set和不走get set

    @Test public void test1() throws Exception{  //获取User类  Class class1=Class.forName("cn.jbit.bea ...

  4. paper 99:CV界的明星人物经典介绍

            CV人物1:Jianbo Shi史建波毕业于UC Berkeley,导师是Jitendra Malik.其最有影响力的研究成果:图像分割.其于2000年在PAMI上多人合作发表”Nor ...

  5. php递归无限极分类实例

    无限级分类原理简介 无限分类看似"高大上",实际上原理是非常简单的 .无限分类不仅仅需要代码的巧妙性,也要依托数据库设计的合理性.要满足无限级分类,数据库需要有两个必须的字段,id ...

  6. js子窗体、父窗体方法互调

    var childWindow = $("#editFrame")[0].contentWindow;//获取子窗体的window对象. childWindow.subForm() ...

  7. php + Bootstrap-v3-Typeahead 自动完成组件的使用

    Bootstrap 中的 Typeahead 组件就是通常所说的自动完成 AutoComplete,类似百度.谷歌等搜索提示:输入关键词出现相应的下拉列表数据. 是Bootstrap-3-Typeah ...

  8. Codeforces 749C:Voting(暴力模拟)

    http://codeforces.com/problemset/problem/749/C 题意:有n个人投票,分为 D 和 R 两派,从1~n的顺序投票,轮到某人投票的时候,他可以将对方的一个人K ...

  9. WordCount示例深度学习MapReduce过程(1)

    我们都安装完Hadoop之后,按照一些案例先要跑一个WourdCount程序,来测试Hadoop安装是否成功.在终端中用命令创建一个文件夹,简单的向两个文件中各写入一段话,然后运行Hadoop,Wou ...

  10. noi 6045 开餐馆

    题目链接:http://noi.openjudge.cn/ch0206/6045/ 解题报告:参考了konjac 蒟蒻的. 题意: 有N个地址,从中选一些开餐馆,要保证相邻餐馆的距离大于k.问最大利润 ...