Codeforce 546D
Time Limit:3000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u
Description
Two soldiers are playing a game. At the beginning first of them chooses a positive integer n and gives it to the second soldier. Then the second one tries to make maximum possible number of rounds. Each round consists of choosing a positive integer x > 1, such that n is divisible by x and replacing n with n / x. When n becomes equal to 1 and there is no more possible valid moves the game is over and the score of the second soldier is equal to the number of rounds he performed.
To make the game more interesting, first soldier chooses n of form a! / b! for some positive integer a and b (a ≥ b). Here by k! we denote the factorial of k that is defined as a product of all positive integers not large than k.
What is the maximum possible score of the second soldier?
Input
First line of input consists of single integer t (1 ≤ t ≤ 1 000 000) denoting number of games soldiers play.
Then follow t lines, each contains pair of integers a and b (1 ≤ b ≤ a ≤ 5 000 000) defining the value of n for a game.
Output
For each game output a maximum score that the second soldier can get.
Sample Input
2
3 1
6 3
2
5
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <queue>
#include <map>
#include <stack>
using namespace std; typedef long long LL;
const LL INF = 1 << 31;
const int MAXN = 5000005;
int pri[5000], vis[MAXN], res[MAXN], c = 1;
void getpri()//刷选2500以内的素数, 同时vis[]判断 500w以内的数是否是素数
{
memset(vis, 0, sizeof vis);
vis[0] = vis[1] = 1;
for(int i = 2; i < 2500; ++i) if(!vis[i]) {
pri[c++] = i;
for(int j = i * i; j < MAXN; j += i)
vis[j] = 1;
}
}
int main()
{
int ans, g, flag;
getpri();
res[1] = res[0] = 0;
for(int i = 2; i < MAXN; ++i)
{
g = i;
ans = 0;
if(!vis[i]) ans = 1; //素数的结果不用除, 只有自己本身一个因子
else {
flag = 0;
for(int j = 1; g != 1 && j < c; ++j) { //要想把 500w以内的合数都分解为质数,
//只需要一直尝试除于 sqrt(500w)内的质数就好了
//因为对于 一个合数n, 它总有一个 质因子小于或等于 sqrt(n)
while(g % pri[j] == 0) { g /= pri[j]; ans++;
if(!vis[g]) { ans++;flag = 1; break; }//此步必须要有, 在试除的过程中, 若已为质数, 及时推出
//另一方面, 如n = 13 * 11111, 由于只刷选到 2500内的质数, 11111不能检测到
}
if(flag) break;
}
}
res[i] = res[i - 1] + ans;
}
int t, a, b;
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &a, &b);
printf("%d\n", res[a] - res[b]);
}
} 另一种做法是:充分利用已经得到的结果, 如 res[100] = res[2] + res[100 / 2] 其中由于 2 和 50 都小于 100, 故已经算出来了
Codeforce 546D的更多相关文章
- Codeforce - Street Lamps
Bahosain is walking in a street of N blocks. Each block is either empty or has one lamp. If there is ...
- Codeforce Round #216 Div2
e,还是写一下这次的codeforce吧...庆祝这个月的开始,看自己有能,b到什么样! cf的第二题,脑抽的交了错两次后过了pretest然后system的挂了..脑子里还有自己要挂的感觉,果然回头 ...
- Codeforce 水题报告(2)
又水了一发Codeforce ,这次继续发发题解顺便给自己PKUSC攒攒人品吧 CodeForces 438C:The Child and Polygon: 描述:给出一个多边形,求三角剖分的方案数( ...
- codeforce 375_2_b_c
codeforce 375_2 标签: 水题 好久没有打代码,竟然一场比赛两次卡在边界条件上....跪 b.题意很简单...纯模拟就可以了,开始忘记了当字符串结束的时候也要更新两个值,所以就错了 #i ...
- codeforce 367dev2_c dp
codeforce 367dev2_c dp 标签: dp 题意: 你可以通过反转任意字符串,使得所给的所有字符串排列顺序为字典序,每次反转都有一定的代价,问你最小的代价 题解:水水的dp...仔细想 ...
- 三维dp&codeforce 369_2_C
三维dp&codeforce 369_2_C 标签: dp codeforce 369_2_C 题意: 一排树,初始的时候有的有颜色,有的没有颜色,现在给没有颜色的树染色,给出n课树,用m种燃 ...
- 强连通分量&hdu_1269&Codeforce 369D
强连通分量 标签: 图论 算法介绍 还记得割点割边算法吗.回顾一下,tarjan算法,dfs过程中记录当前点的时间戳,并通过它的子节点的low值更新它的low,low值是这个点不通过它的父亲节点最远可 ...
- 【树状数组】区间出现偶数次数的异或和(区间不同数的异或和)@ codeforce 703 D
[树状数组]区间出现偶数次数的异或和(区间不同数的异或和)@ codeforce 703 D PROBLEM 题目描述 初始给定n个卡片拍成一排,其中第i个卡片上的数为x[i]. 有q个询问,每次询问 ...
- 解题报告:codeforce 7C Line
codeforce 7C C. Line time limit per test1 second memory limit per test256 megabytes A line on the pl ...
随机推荐
- WinForm相关注意点
1. //this.dgvEmployees.ColumnHeadersDefaultCellStyle.ForeColor = Color.Blue; //dgvEmployees.RowHeade ...
- php数据访问(修改)
修改:跟添加相似,需要显示默认值 先嵌入php代码 查询数据库 $code = $_GET["c"]; $db = new MySQLi("localhost" ...
- 118. Pascal's Triangle
题目: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5, ...
- Swift - 初始化Initialization
Ps:苹果官方文档-Initialization 自定义控件初始化中常见的几种错误(指定构造器和便利构造器)截图: 意思是:1.没有添加重写符override(重写父类方法)2.没有重写initW ...
- DB2 bind on z/os
BIND and REBIND options for packages and plans There are several options you can use for binding or ...
- 借助LinkedHashMap实现基于LRU算法缓存
一.LRU算法介绍 LRU(Least Recently Used)最近最少使用算法,是用在操作系统中的页面置换算法,因为内存空间是有限的,不可能把所有东西都放进来,所以就必须要有所取舍,我们应该把什 ...
- hibernate之处理视图
近期,我去用hibernate去创建视图, 发现无法进立建立视图, 为啥? 个人去尝试去,却发现无法很好的完成, 因为hibernate的作用类似视图 后解决方案是: 1.用传统的方式去处理 2.写存 ...
- Asp.net窄屏页面 手机端新闻列表
<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="SearchNotice.a ...
- mipi和dsi
转自: http://blog.csdn.net/longxiaowu/article/details/24410021 一.MIPI MIPI(移动行业处理器接口)是Mobile Industry ...
- ListView优化中ViewHolder要不要定义为static静态内部类?
给学生讲课的时候,发现存在这个问题,下来百度了下,发现很纠结,涉及到了内部类对外部类的引用,静态类的生命周期等java知识,现总结如下: static class ViewHolder { //定义l ...