项目连接:可以直接fork使用
Paddlenlp之UIE模型实战实体抽取任务【打车数据、快递单】

0.背景介绍

本项目将演示如何通过小样本样本进行模型微调,快速且准确抽取快递单中的目的地、出发地、时间、打车费用等内容,形成结构化信息。辅助物流行业从业者进行有效信息的提取,从而降低客户填单的成本。

数据集情况:
waybill.jsonl文件是快递单信息数据集:

{“id”: 57, “text”: “昌胜远黑龙江省哈尔滨市南岗区宽桥街28号18618391296”, “relations”: [], “entities”: [{“id”: 111, “start_offset”: 0, “end_offset”: 3, “label”: “姓名”}, {“id”: 112, “start_offset”: 3, “end_offset”: 7, “label”: “省份”}, {“id”: 113, “start_offset”: 7, “end_offset”: 11, “label”: “城市”}, {“id”: 114, “start_offset”: 11, “end_offset”: 14, “label”: “县区”}, {“id”: 115, “start_offset”: 14, “end_offset”: 20, “label”: “详细地址”}, {“id”: 116, “start_offset”: 20, “end_offset”: 31, “label”: “电话”}]}
{“id”: 58, “text”: “易颖18500308469山东省烟台市莱阳市富水南路1号”, “relations”: [], “entities”: [{“id”: 118, “start_offset”: 0, “end_offset”: 2, “label”: “姓名”}, {“id”: 119, “start_offset”: 2, “end_offset”: 13, “label”: “电话”}, {“id”: 120, “start_offset”: 13, “end_offset”: 16, “label”: “省份”}, {“id”: 121, “start_offset”: 16, “end_offset”: 19, “label”: “城市”}, {“id”: 122, “start_offset”: 19, “end_offset”: 22, “label”: “县区”}, {“id”: 123, “start_offset”: 22, “end_offset”: 28, “label”: “详细地址”}]}

doccano_ext.jsonl是打车数据集:

{“id”: 1, “text”: “昨天晚上十点加班打车回家58元”, “relations”: [], “entities”: [{“id”: 0, “start_offset”: 0, “end_offset”: 6, “label”: “时间”}, {“id”: 1, “start_offset”: 11, “end_offset”: 12, “label”: “目的地”}, {“id”: 2, “start_offset”: 12, “end_offset”: 14, “label”: “费用”}]}
{“id”: 2, “text”: “三月三号早上12点46加班,到公司54”, “relations”: [], “entities”: [{“id”: 3, “start_offset”: 0, “end_offset”: 11, “label”: “时间”}, {“id”: 4, “start_offset”: 15, “end_offset”: 17, “label”: “目的地”}, {“id”: 5, “start_offset”: 17, “end_offset”: 19, “label”: “费用”}]}
{“id”: 3, “text”: “8月31号十一点零四工作加班五十块钱”, “relations”: [], “entities”: [{“id”: 6, “start_offset”: 0, “end_offset”: 10, “label”: “时间”}, {“id”: 7, “start_offset”: 14, “end_offset”: 16, “label”: “费用”}]}
{“id”: 4, “text”: “5月17号晚上10点35分加班打车回家,36块五”, “relations”: [], “entities”: [{“id”: 8, “start_offset”: 0, “end_offset”: 13, “label”: “时间”}, {“id”: 1, “start_offset”: 18, “end_offset”: 19, “label”: “目的地”}, {“id”: 9, “start_offset”: 20, “end_offset”: 24, “label”: “费用”}]}
{“id”: 5, “text”: “2009年1月份通讯费一百元”, “relations”: [], “entities”: [{“id”: 10, “start_offset”: 0, “end_offset”: 7, “label”: “时间”}, {“id”: 11, “start_offset”: 11, “end_offset”: 13, “label”: “费用”}]}

结果展示预览

输入:

城市内交通费7月5日金额114广州至佛山
从百度大厦到龙泽苑东区打车费二十元
上海虹桥高铁到杭州时间是9月24日费用是73元
上周末坐动车从北京到上海花费五十块五毛
昨天北京飞上海话费一百元

输出:

{"出发地": [{"text": "广州", "start": 15, "end": 17, "probability": 0.9073772252165782}], "目的地": [{"text": "佛山", "start": 18, "end": 20, "probability": 0.9927365183877761}], "时间": [{"text": "7月5日", "start": 6, "end": 10, "probability": 0.9978010396512218}]}
{"出发地": [{"text": "百度大厦", "start": 1, "end": 5, "probability": 0.968825147409472}], "目的地": [{"text": "龙泽苑东区", "start": 6, "end": 11, "probability": 0.9877913072493669}]}
{"目的地": [{"text": "杭州", "start": 7, "end": 9, "probability": 0.9929172180094881}], "时间": [{"text": "9月24日", "start": 12, "end": 17, "probability": 0.9953342057701597}]}
{#"出发地": [{"text": "北京", "start": 7, "end": 9, "probability": 0.973048366717471}], "目的地": [{"text": "上海", "start": 10, "end": 12, "probability": 0.988486130309397}], "时间": [{"text": "上周末", "start": 0, "end": 3, "probability": 0.9977407699595275}]}
{"出发地": [{"text": "北京", "start": 2, "end": 4, "probability": 0.974188953533556}], "目的地": [{"text": "上海", "start": 5, "end": 7, "probability": 0.9928200521486445}], "时间": [{"text": "昨天", "start": 0, "end": 2, "probability": 0.9731559534465504}]}

1.数据集加载(快递单数据、打车数据)

doccano_file: 从doccano导出的数据标注文件。

save_dir: 训练数据的保存目录,默认存储在data目录下。

negative_ratio: 最大负例比例,该参数只对抽取类型任务有效,适当构造负例可提升模型效果。负例数量和实际的标签数量有关,最大负例数量 = negative_ratio * 正例数量。该参数只对训练集有效,默认为5。为了保证评估指标的准确性,验证集和测试集默认构造全负例。

splits: 划分数据集时训练集、验证集所占的比例。默认为[0.8, 0.1, 0.1]表示按照8:1:1的比例将数据划分为训练集、验证集和测试集。

task_type: 选择任务类型,可选有抽取和分类两种类型的任务。

options: 指定分类任务的类别标签,该参数只对分类类型任务有效。默认为[“正向”, “负向”]。

prompt_prefix: 声明分类任务的prompt前缀信息,该参数只对分类类型任务有效。默认为"情感倾向"。

is_shuffle: 是否对数据集进行随机打散,默认为True。

seed: 随机种子,默认为1000.

*separator: 实体类别/评价维度与分类标签的分隔符,该参数只对实体/评价维度级分类任务有效。默认为"##"。

!python doccano.py \
--doccano_file ./data/doccano_ext.jsonl \
--task_type 'ext' \
--save_dir ./data \
--splits 0.8 0.1 0.1 \
--negative_ratio 5
[2022-07-14 11:34:26,474] [    INFO] - Converting doccano data...
100%|████████████████████████████████████████| 40/40 [00:00<00:00, 42560.16it/s]
[2022-07-14 11:34:26,477] [ INFO] - Adding negative samples for first stage prompt...
100%|███████████████████████████████████████| 40/40 [00:00<00:00, 161009.75it/s]
[2022-07-14 11:34:26,478] [ INFO] - Converting doccano data...
100%|██████████████████████████████████████████| 5/5 [00:00<00:00, 21754.69it/s]
[2022-07-14 11:34:26,479] [ INFO] - Adding negative samples for first stage prompt...
100%|██████████████████████████████████████████| 5/5 [00:00<00:00, 44057.82it/s]
[2022-07-14 11:34:26,479] [ INFO] - Converting doccano data...
100%|██████████████████████████████████████████| 5/5 [00:00<00:00, 26181.67it/s]
[2022-07-14 11:34:26,480] [ INFO] - Adding negative samples for first stage prompt...
100%|██████████████████████████████████████████| 5/5 [00:00<00:00, 45689.59it/s]
[2022-07-14 11:34:26,482] [ INFO] - Save 160 examples to ./data/train.txt.
[2022-07-14 11:34:26,482] [ INFO] - Save 20 examples to ./data/dev.txt.
[2022-07-14 11:34:26,482] [ INFO] - Save 20 examples to ./data/test.txt.
[2022-07-14 11:34:26,482] [ INFO] - Finished! It takes 0.01 seconds

输出部分展示:

{"content": "上海到北京机票1320元", "result_list": [{"text": "上海", "start": 0, "end": 2}], "prompt": "出发地"}
{"content": "上海到北京机票1320元", "result_list": [{"text": "北京", "start": 3, "end": 5}], "prompt": "目的地"}
{"content": "上海到北京机票1320元", "result_list": [{"text": "1320", "start": 7, "end": 11}], "prompt": "费用"}
{"content": "上海虹桥到杭州东站高铁g7555共73元时间是10月14日", "result_list": [{"text": "上海虹桥", "start": 0, "end": 4}], "prompt": "出发地"}
{"content": "上海虹桥到杭州东站高铁g7555共73元时间是10月14日", "result_list": [{"text": "杭州东站", "start": 5, "end": 9}], "prompt": "目的地"}
{"content": "上海虹桥到杭州东站高铁g7555共73元时间是10月14日", "result_list": [{"text": "73", "start": 17, "end": 19}], "prompt": "费用"}
{"content": "上海虹桥到杭州东站高铁g7555共73元时间是10月14日", "result_list": [{"text": "10月14日", "start": 23, "end": 29}], "prompt": "时间"}
{"content": "昨天晚上十点加班打车回家58元", "result_list": [{"text": "昨天晚上十点", "start": 0, "end": 6}], "prompt": "时间"}
{"content": "昨天晚上十点加班打车回家58元", "result_list": [{"text": "家", "start": 11, "end": 12}], "prompt": "目的地"}
{"content": "昨天晚上十点加班打车回家58元", "result_list": [{"text": "58", "start": 12, "end": 14}], "prompt": "费用"}
{"content": "2月20号从南山到光明二十元", "result_list": [{"text": "2月20号", "start": 0, "end": 5}], "prompt": "时间"}

2.模型训练

!python finetune.py \
--train_path "./data/train.txt" \
--dev_path "./data/dev.txt" \
--save_dir "./checkpoint" \
--learning_rate 1e-5 \
--batch_size 8 \
--max_seq_len 512 \
--num_epochs 100 \
--model "uie-base" \
--seed 1000 \
--logging_steps 10 \
--valid_steps 50 \
--device "gpu"
部分训练效果展示:**具体输出已折叠**

[2022-07-12 15:09:47,643] [    INFO] - global step 250, epoch: 13, loss: 0.00045, speed: 3.90 step/s
[2022-07-12 15:09:47,910] [ INFO] - Evaluation precision: 1.00000, recall: 1.00000, F1: 1.00000
[2022-07-12 15:09:50,399] [ INFO] - global step 260, epoch: 13, loss: 0.00043, speed: 4.02 step/s
[2022-07-12 15:09:52,966] [ INFO] - global step 270, epoch: 14, loss: 0.00042, speed: 3.90 step/s
[2022-07-12 15:09:55,464] [ INFO] - global step 280, epoch: 14, loss: 0.00040, speed: 4.00 step/s
[2022-07-12 15:09:58,028] [ INFO] - global step 290, epoch: 15, loss: 0.00039, speed: 3.90 step/s
[2022-07-12 15:10:00,516] [ INFO] - global step 300, epoch: 15, loss: 0.00038, speed: 4.02 step/s
[2022-07-12 15:10:00,781] [ INFO] - Evaluation precision: 1.00000, recall: 1.00000, F1: 1.00000
[2022-07-12 15:10:03,348] [ INFO] - global step 310, epoch: 16, loss: 0.00036, speed: 3.90 step/s
[2022-07-12 15:10:05,836] [ INFO] - global step 320, epoch: 16, loss: 0.00035, speed: 4.02 step/s
[2022-07-12 15:10:08,393] [ INFO] - global step 330, epoch: 17, loss: 0.00034, speed: 3.91 step/s
[2022-07-12 15:10:10,888] [ INFO] - global step 340, epoch: 17, loss: 0.00033, speed: 4.01 step/s
 推荐使用GPU环境,否则可能会内存溢出。CPU环境下,可以修改model为uie-tiny,适当调下batch_size。

增加准确率的话:--num_epochs 设置大点多训练训练

可配置参数说明:
**train_path:** 训练集文件路径。 **dev_path:** 验证集文件路径。 **save_dir:** 模型存储路径,默认为./checkpoint。 **learning_rate:** 学习率,默认为1e-5。 **batch_size:** 批处理大小,请结合显存情况进行调整,若出现显存不足,请适当调低这一参数,默认为16。 **max_seq_len:** 文本最大切分长度,输入超过最大长度时会对输入文本进行自动切分,默认为512。 **num_epochs:** 训练轮数,默认为100。 **model** 选择模型,程序会基于选择的模型进行模型微调,可选有uie-base和uie-tiny,默认为uie-base。 **seed:** 随机种子,默认为1000. **logging_steps:** 日志打印的间隔steps数,默认10。 **valid_steps:** evaluate的间隔steps数,默认100。 **device:** 选用什么设备进行训练,可选cpu或gpu。

3模型评估

!python evaluate.py \
--model_path ./checkpoint/model_best \
--test_path ./data/test.txt \
--batch_size 16 \
--max_seq_len 512
[2022-07-11 13:41:23,831] [    INFO] - -----------------------------
[2022-07-11 13:41:23,831] [ INFO] - Class Name: all_classes
[2022-07-11 13:41:23,832] [ INFO] - Evaluation Precision: 1.00000 | Recall: 1.00000 | F1: 1.00000 [2022-07-11 13:41:35,024] [ INFO] - -----------------------------
[2022-07-11 13:41:35,024] [ INFO] - Class Name: 出发地
[2022-07-11 13:41:35,024] [ INFO] - Evaluation Precision: 1.00000 | Recall: 1.00000 | F1: 1.00000
[2022-07-11 13:41:35,139] [ INFO] - -----------------------------
[2022-07-11 13:41:35,139] [ INFO] - Class Name: 目的地
[2022-07-11 13:41:35,139] [ INFO] - Evaluation Precision: 1.00000 | Recall: 1.00000 | F1: 1.00000
[2022-07-11 13:41:35,246] [ INFO] - -----------------------------
[2022-07-11 13:41:35,246] [ INFO] - Class Name: 费用
[2022-07-11 13:41:35,246] [ INFO] - Evaluation Precision: 1.00000 | Recall: 1.00000 | F1: 1.00000
[2022-07-11 13:41:35,313] [ INFO] - -----------------------------
[2022-07-11 13:41:35,313] [ INFO] - Class Name: 时间
[2022-07-11 13:41:35,313] [ INFO] - Evaluation Precision: 1.00000 | Recall: 1.00000 | F1: 1.00000

model_path: 进行评估的模型文件夹路径,路径下需包含模型权重文件model_state.pdparams及配置文件model_config.json。

test_path: 进行评估的测试集文件。

batch_size: 批处理大小,请结合机器情况进行调整,默认为16。

max_seq_len: 文本最大切分长度,输入超过最大长度时会对输入文本进行自动切分,默认为512。

model: 选择所使用的模型,可选有uie-base, uie-medium, uie-mini, uie-micro和uie-nano,默认为uie-base。

debug: 是否开启debug模式对每个正例类别分别进行评估,该模式仅用于模型调试,默认关闭。

4 结果预测

from pprint import pprint
import json
from paddlenlp import Taskflow def openreadtxt(file_name):
data = []
file = open(file_name,'r',encoding='UTF-8') #打开文件
file_data = file.readlines() #读取所有行
for row in file_data:
data.append(row) #将每行数据插入data中
return data data_input=openreadtxt('./input/nlp.txt') schema = ['出发地', '目的地','时间']
few_ie = Taskflow('information_extraction', schema=schema, batch_size=1,task_path='./checkpoint/model_best') results=few_ie(data_input) with open("./output/test.txt", "w+",encoding='UTF-8') as f: #a : 写入文件,若文件不存在则会先创建再写入,但不会覆盖原文件,而是追加在文件末尾
for result in results:
line = json.dumps(result, ensure_ascii=False) #对中文默认使用的ascii编码.想输出真正的中文需要指定ensure_ascii=False
f.write(line + "\n") print("数据结果已导出")

输入文件展示:

城市内交通费7月5日金额114广州至佛山
从百度大厦到龙泽苑东区打车费二十元
上海虹桥高铁到杭州时间是9月24日费用是73元
上周末坐动车从北京到上海花费五十块五毛
昨天北京飞上海话费一百元

输出展示:

{"出发地": [{"text": "广州", "start": 15, "end": 17, "probability": 0.9073772252165782}], "目的地": [{"text": "佛山", "start": 18, "end": 20, "probability": 0.9927365183877761}], "时间": [{"text": "7月5日", "start": 6, "end": 10, "probability": 0.9978010396512218}]}
{"出发地": [{"text": "百度大厦", "start": 1, "end": 5, "probability": 0.968825147409472}], "目的地": [{"text": "龙泽苑东区", "start": 6, "end": 11, "probability": 0.9877913072493669}]}
{"目的地": [{"text": "杭州", "start": 7, "end": 9, "probability": 0.9929172180094881}], "时间": [{"text": "9月24日", "start": 12, "end": 17, "probability": 0.9953342057701597}]}
{"出发地": [{"text": "北京", "start": 7, "end": 9, "probability": 0.973048366717471}], "目的地": [{"text": "上海", "start": 10, "end": 12, "probability": 0.988486130309397}], "时间": [{"text": "上周末", "start": 0, "end": 3, "probability": 0.9977407699595275}]}
{"出发地": [{"text": "北京", "start": 2, "end": 4, "probability": 0.974188953533556}], "目的地": [{"text": "上海", "start": 5, "end": 7, "probability": 0.9928200521486445}], "时间": [{"text": "昨天", "start": 0, "end": 2, "probability": 0.9731559534465504}]}

5.可视化显示visualDL

详细文档可以参考:
https://aistudio.baidu.com/aistudio/projectdetail/1739945?contributionType=1
有详细讲解,具体实现参考代码,

核心是:添加一个初始化记录器

下面是结果展示:



6.小技巧:获取paddle开源数据集

**数据集网站:**https://paddlenlp.readthedocs.io/zh/latest/data_prepare/dataset_list.html#id2

数据集名称 简介 调用方法

CoLA 单句分类任务,二分类,判断句子是否合法 paddlenlp.datasets.load_dataset(‘glue’,‘cola’)

SST-2 单句分类任务,二分类,判断句子情感极性
paddlenlp.datasets.load_dataset(‘glue’,‘sst-2’)

MRPC 句对匹配任务,二分类,判断句子对是否是相同意思 paddlenlp.datasets.load_dataset(‘glue’,‘mrpc’)

STSB 计算句子对相似性,分数为1~5 paddlenlp.datasets.load_dataset(‘glue’,‘sts-b’)
QQP 判定句子对是否等效,等效、不等效两种情况,二分类任务 paddlenlp.datasets.load_dataset(‘glue’,‘qqp’)

MNLI 句子对,一个前提,一个是假设。前提和假设的关系有三种情况:蕴含(entailment),矛盾(contradiction),中立(neutral)。句子对三分类问题 paddlenlp.datasets.load_dataset(‘glue’,‘mnli’)

QNLI 判断问题(question)和句子(sentence)是否蕴含,蕴含和不蕴含,二分类 paddlenlp.datasets.load_dataset(‘glue’,‘qnli’)

RTE 判断句对是否蕴含,句子1和句子2是否互为蕴含,二分类任务 paddlenlp.datasets.load_dataset(‘glue’,‘rte’)

WNLI 判断句子对是否相关,相关或不相关,二分类任务 paddlenlp.datasets.load_dataset(‘glue’,‘wnli’)

LCQMC A Large-scale Chinese Question Matching Corpus 语义匹配数据集 paddlenlp.datasets.load_dataset(‘lcqmc’)

通过paddlenlp提供的api调用,可以很方便实现数据加载,当然你想要把数据下载到本地,可以参考我下面的输出就可以保存数据了。

#加载中文评论情感分析语料数据集ChnSentiCorp
from paddlenlp.datasets import load_dataset train_ds, dev_ds, test_ds = load_dataset("chnsenticorp", splits=["train", "dev", "test"]) with open("./output/test2.txt", "w+",encoding='UTF-8') as f: #a : 写入文件,若文件不存在则会先创建再写入,但不会覆盖原文件,而是追加在文件末尾
for result in test_ds:
line = json.dumps(result, ensure_ascii=False) #对中文默认使用的ascii编码.想输出真正的中文需要指定ensure_ascii=False
f.write(line + "\n")

7 总结

UIE(Universal Information Extraction):Yaojie Lu等人在ACL-2022中提出了通用信息抽取统一框架UIE。该框架实现了实体抽取、关系抽取、事件抽取、情感分析等任务的统一建模,并使得不同任务间具备良好的迁移和泛化能力。PaddleNLP借鉴该论文的方法,基于ERNIE 3.0知识增强预训练模型,训练并开源了首个中文通用信息抽取模型UIE。该模型可以支持不限定行业领域和抽取目标的关键信息抽取,实现零样本快速冷启动,并具备优秀的小样本微调能力,快速适配特定的抽取目标。

UIE的优势

使用简单: 用户可以使用自然语言自定义抽取目标,无需训练即可统一抽取输入文本中的对应信息。实现开箱即用,并满足各类信息抽取需求。

降本增效: 以往的信息抽取技术需要大量标注数据才能保证信息抽取的效果,为了提高开发过程中的开发效率,减少不必要的重复工作时间,开放域信息抽取可以实现零样本(zero-shot)或者少样本(few-shot)抽取,大幅度降低标注数据依赖,在降低成本的同时,还提升了效果。

效果领先: 开放域信息抽取在多种场景,多种任务上,均有不俗的表现。

本人本次主要通过实体抽取这个案例分享给大家,主要对开源的paddlenlp的案例进行了细化,比如在结果可视化方面以及结果输入输出的增加,使demo项目更佳完善。

当然标注问题是所有问题的痛点,可以参考我的博客来解决这个问题

本人博客:https://blog.csdn.net/sinat_39620217?type=blog

Paddlenlp之UIE模型实战实体抽取任务【打车数据、快递单】的更多相关文章

  1. 对doccano自动标注使用的默认UIE模型进行微调以提高特定领域的实体识别能力,提高标注速度

    虽然doccano的自动标注使用默认的UIE模型可以识别出一定的实体,但是在特定领域或者因为实体类别名不能被理解很多实体是识别不了的,所以我们可以通过自己标注的数据对模型进行微调来满足我们Auto L ...

  2. iOS开发——高级技术精选OC篇&Runtime之字典转模型实战

    Runtime之字典转模型实战 如果您还不知道什么是runtime,那么请先看看这几篇文章: http://www.cnblogs.com/iCocos/p/4734687.html http://w ...

  3. Runtime之字典转模型实战

    Runtime之字典转模型实战 先来看看怎么使用Runtime给模型类赋值 iOS开发中的Runtime可谓是功能强大,同时Runtime使用起来也是非常灵活的,今天博客的内容主要就是使用到一丁点的R ...

  4. [开源]开放域实体抽取泛用工具 NetCore2.1

    开放域实体抽取泛用工具 https://github.com/magicdict/FDDC 更新时间 2018年7月16日 By 带着兔子去旅行 开发这个工具的起源是天池大数据竞赛,FDDC2018金 ...

  5. C#并行Parallel编程模型实战技巧手册

    一.课程介绍 本次分享课程属于<C#高级编程实战技能开发宝典课程系列>中的一部分,阿笨后续会计划将实际项目中的一些比较实用的关于C#高级编程的技巧分享出来给大家进行学习,不断的收集.整理和 ...

  6. Python 自动化测试全攻略:五种自动化测试模型实战详解

    随着移动互联网的发展,软件研发模型逐步完善,软件交付质量越来越受到软件公司的重视,软件测试技术特别是自动化测试技术开始在软件系统研发过程中发挥着越来越重要的作用. 与传统的手工测试技术相比,自动化测试 ...

  7. Linux实战教学笔记21:Rsync数据同步工具

    第二十一节 Rsync数据同步工具 标签(空格分隔): Linux实战教学笔记-陈思齐 ---本教学笔记是本人学习和工作生涯中的摘记整理而成,此为初稿(尚有诸多不完善之处),为原创作品,允许转载,转载 ...

  8. PHP中如何在数组中随机抽取n个数据的值 - array_rand()?

    PHP中如何在数组中随机抽取n个数据的值? 最佳答案 array_rand() 在你想从数组中取出一个或多个随机的单元时相当有用.它接受 input 作为输入数组和一个可选的参数 num_req,指明 ...

  9. python Django教程 之 模型(数据库)、自定义Field、数据表更改、QuerySet API

    python  Django教程  之 模型(数据库).自定义Field.数据表更改.QuerySet API 一.Django 模型(数据库) Django 模型是与数据库相关的,与数据库相关的代码 ...

  10. 基于MVC4+EasyUI的Web开发框架经验总结(3)- 使用Json实体类构建菜单数据

    最近花了不少时间在重构和进一步提炼我的Web开发框架上,力求在用户体验和界面设计方面,和Winform开发框架保持一致,而在Web上,我主要采用EasyUI的前端界面处理技术,走MVC的技术路线,在重 ...

随机推荐

  1. Web 3.0 会是互联网的下一个时代吗?

    2000 年初,只读互联网 Web 1.0 被 Web 2.0 所取代.在 Web 2.0 时代,用户摆脱了只读的困扰,可以在平台上进行互动并创作内容.而 Web 3.0 的到来,除了加密货币和区块链 ...

  2. Centos7 cmake版本升级(v2.8.12.2->v3.16.6)

    1. 查看当前cmake版本 [root@localhost ~]# cmake -version cmake version 2.8.12.2 2. 进行卸载 [root@localhost ~]# ...

  3. pikachu靶场

    pikachu靶场 基于表单暴力破解 看一下界面,有两个输入框,使用暴力破解使用Cluster bomb 前提须知是 Sinper 对$$符号标记的数据进行逐个替换 Battering ram 对$$ ...

  4. AtCoder Beginner Contest 179 个人题解(C欧拉筛,D前缀和,E循环节,F线段树)

    补题链接:Here A - Plural Form 字符串,末尾有 s 的加es,不然加 s . B - Go to Jail 输入的时候判断一下是否连续相等即可 C - A x B + C (mat ...

  5. 技术文档 | 免下载、0配置、多任务并发,在Docker Image中使用OpenSCA

    想跳过下载步骤快速使用OpenSCA检测代码风险?想实现多个项目并发扫描? 在Docker Image中使用OpenSCA即可轻松实现.一起来look look 目的 方便用户使用最新版本的 Open ...

  6. canvas验证码 uni-app/小程序

    1 <template> 2 <view class="logo-wrapper"> 3 <view class="logo-img&quo ...

  7. python之logging日志

    一.logging介绍: 使用 logging.debug(text)来打印信息,info等的使用方法与debug一致,都只有一个位置参数 默认日志界别为:会输出warning以上的信息,代码示例: ...

  8. 01-Linux命令和C语言基础

    1 Linux开发环境搭建 1.1 虚拟机安装 1.安装VM Ware 2.安装ubuntu 分区 -- Linux没有盘符的概念 / -- 5000M /boot -- 系统启动过程中读取的重要文件 ...

  9. HTTP 1.1响应码

    HTTP 1.1响应码 响应码和信息 含义 HttpURLConnection 1XX 信息 100 Continue 服务器准备接受请求主体,客户端应当发送请求主体:这允许客户端在请求中发送大量数据 ...

  10. [粘贴]Introducing Exadata X9M: Dramatically Faster, More Cost Effective, and Easier to Use

    https://blogs.oracle.com/exadata/post/exadata-x9m   The Exadata Product Management and Development t ...