Description

Link.

给定长度为 \(n\) 的序列 \(a_1, a_2, \dots, a_n\);共 \(m\) 组询问,每次询问给出 \(d,p_1,p_2\),求

\[\sum_{i=0}^{d-1} \sum_{j=0}^{d-1} \sum_{k=0}^{d-1} a_{p_1+d\cdot i+j} a_{p_2 + d\cdot j + k}
\]

Solution

\[\sum_{i=0}^{d-1}\sum_{j=0}^{d-1}\sum_{k=0}^{d-1}a(p+di+j)a(q+dj+k) \\
\begin{aligned}
&=\sum_{i=0}^{d-1}\sum_{j=0}^{d-1}a(p+di+j)\sum_{k=0}^{d-1}a(q+dj+k) \\
&=\sum_{j=0}^{d-1}\left(\sum_{i=0}^{d-1}a(p+di+j)\right)\left(\sum_{k=0}^{d-1}a(q+dj+k)\right) \\
&=\sum_{j=0}^{d-1}\left(\sum_{i=0}^{d-1}a(p+di+j)\right)\left(pre(q+dj+d-1)-pre(q+dj-1)\right) \\
\end{aligned}
\]

由题意,\(q+dj+k\le n\),也就是说 \(q+d(d-1)+d(-1)=q+d^{2}\le n\),\(q_{\min}=1\),所以 \(d\) 是根号规模。

那么就可以直接来了,设 \(s(i,j)\) 为前缀 \(i\) 的间隔 \(j\) 前缀和。比如 \(\texttt{1 2 3 4 5 6}\) 的 \(s(6,2)=12\),也就是 \(\texttt{1}\)\(\texttt{ 2}\)\(\texttt{ 3}\)\(\texttt{ 4}\)\(\texttt{ 5}\)\(\texttt{ 6}\),蓝色表示被计入贡献,这个东西显然可以递推。

然后把这个带进式子

\[\sum_{j=0}^{d-1}\left(\sum_{i=0}^{d-1}a(p+di+j)\right)\left(pre(q+dj+d-1)-pre(q+dj-1)\right) \\
\begin{aligned}
&=\sum_{j=0}^{d-1}\left(s(p+j+d(d-1),d)-s(p+j,d)+a(p+j)\right)\left(pre(q+dj+d-1)-pre(q+dj-1)\right) \\
\end{aligned}
\]

然后就可以直接算了。

然后你会发现你被卡常了,于是把 \(s(i,j)\) 换成 \(s(j,i)\),前面是根号大小寻址更快,就可以无压力过掉了。

#include<bits/stdc++.h>
typedef unsigned int ui;
const int border=450;
int n,m,opd,opp,opq;
ui a[200010],s[500][200010],prs[200010],ans;
namespace IO{
const int sz=1<<22;
char a[sz+5],b[sz+5],*p1=a,*p2=a,*t=b,p[105];
inline char gc(){
return p1==p2?(p2=(p1=a)+fread(a,1,sz,stdin),p1==p2?EOF:*p1++):*p1++;
}
template<class T> void gi(T& x){
x=0; char c=gc();
for(;c<'0'||c>'9';c=gc());
for(;c>='0'&&c<='9';c=gc())
x=(x<<3)+(x<<1)+(c-'0');
}
inline void flush(){fwrite(b,1,t-b,stdout),t=b; }
inline void pc(char x){*t++=x; if(t-b==sz) flush(); }
template<class T> void pi(T x,char c='\n'){
if(x<0) x=-x;
if(x==0) pc('0'); int t=0;
for(;x;x/=10) p[++t]=x%10+'0';
for(;t;--t) pc(p[t]); pc(c);
}
struct F{~F(){flush();}}f;
}
using IO::gi;
using IO::pi;
int main()
{
gi(n);
for(int i=1;i<=n;++i) gi(a[i]),prs[i]=prs[i-1]+a[i];
for(int j=1;j<=border;++j)
{
for(int i=1;i<=j;++i) s[j][i]=a[i];
for(int i=j+1;i<=n;++i) s[j][i]=s[j][i-j]+a[i];
}
gi(m);
while(m--)
{
gi(opd),gi(opp),gi(opq);
ans=0;
for(int i=0;i<opd;++i) ans+=(s[opd][opp+i+opd*(opd-1)]-s[opd][opp+i]+a[opp+i])*(prs[opq+opd*i+opd-1]-prs[opq+opd*i-1]);
pi(ans);
}
return 0;
}

Solution -「THUPC 2021」区间矩阵乘法的更多相关文章

  1. Solution -「NOI 2021」「洛谷 P7740」机器人游戏

    \(\mathcal{Description}\)   Link.   自己去读题面叭~ \(\mathcal{Solution}\)   首先,参悟[样例解释 #2].一种暴力的思路即为钦定集合 \ ...

  2. Solution -「JOISC 2021」古老的机器

    \(\mathcal{Description}\)   Link.   这是一道通信题.   对于长度为一个 \(n\),仅包含字符 X, Y, Z 的字符串 \(s\),将其中 \(n\) 个字符按 ...

  3. Solution -「JOISC 2021」「LOJ #3489」饮食区

    \(\mathcal{Description}\)   Link.   呐--不想概括题意,自己去读叭~ \(\mathcal{Solution}\)   如果仅有 1. 3. 操作,能不能做?    ...

  4. Solution -「JOISC 2021」「LOJ #3495」聚会 2

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个结点的树.称点集 \(S\) 到结点 \(u\) 的会合距离为 \(\sum_{v\in S}\ope ...

  5. Solution -「JOISC 2021」「LOJ #3491」道路建设

    \(\mathcal{Description}\)   Link.   平面上有 \(n\) 个互不重合的点 \((x_{1..n},y_{1..n})\),求其两两曼哈顿距离的前 \(m\) 小值. ...

  6. Solution -「NOIOL-S 2021」「洛谷 P7470」岛屿探险

    \(\mathcal{Description}\)   Link.   给定序列 \(\{(a,b)_n\}\),\(q\) 组形如 \((l,r,c,d)\) 的询问,求 \[\Big|\{i\in ...

  7. 【题解】#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT)

    [题解]#6622. 「THUPC 2019」找树 / findtree(Matrix Tree+FWT) 之前做这道题不理解,有一点走火入魔了,甚至想要一本近世代数来看,然后通过人类智慧思考后发现, ...

  8. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  9. loj#6074. 「2017 山东一轮集训 Day6」子序列(矩阵乘法 dp)

    题意 题目链接 Sol 设\(f[i][j]\)表示前\(i\)个位置中,以\(j\)为结尾的方案数. 转移的时候判断一下\(j\)是否和当前位置相同 然后发现可以用矩阵优化,可以分别求出前缀积和逆矩 ...

  10. Solution -「校内题」矩阵求和

    Description 共 \(T\) 组数据.对于每组数据,给定 \(a, b, n\),求 \(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \gcd(a^i - b^i, ...

随机推荐

  1. Redis系列16:聊聊布隆过滤器(原理篇)

    Redis系列1:深刻理解高性能Redis的本质 Redis系列2:数据持久化提高可用性 Redis系列3:高可用之主从架构 Redis系列4:高可用之Sentinel(哨兵模式) Redis系列5: ...

  2. HStore表全了解:实时入库与高效查询利器

    摘要:本文章将从使用者角度介绍HStore概念以及使用. 本文分享自华为云社区<GaussDB(DWS)HStore表讲解>,作者:大威天龙:- . HStore表简介 面对实时入库和实时 ...

  3. 【电脑Tips】Win11自动更新之后开机黑屏

    目录 0.问题描述 1. 释放静电 具体操作 效果 参考博客 2. 运行explorer.exe 具体操作: [问题]:如何打开任务管理器? 效果 参考博客 另外的运行方法 3. 禁用APP Read ...

  4. 前端vue可以左右滚动的切换的tabs tabs选项卡 滑动动画效果 自动宽度

    前端vue可以左右滚动的切换的tabs tabs选项卡 滑动动画效果 自动宽度, 下载完整代码请访问https://ext.dcloud.net.cn/plugin?id=13003 效果图如下:   ...

  5. 如何优化数据warehouse的搜索和查询

    目录 1. 引言 2. 技术原理及概念 2.1 基本概念解释 2.2 技术原理介绍 2.2.1 查询优化 2.2.2 索引优化 2.2.3 数据访问优化 2.3 相关技术比较 2.3.1 SQL 2. ...

  6. 大数据实战手册-开发篇之pycharm远程开发调试

    2.1 pycharm远程开发调试 2.1.1 python版本一致 #版本都保持3.6.6 #root cd /usr/local/python3/bin/pip3 list 备注:[python模 ...

  7. 行行AI人才直播第4期: 跟随占冰强老师走近《如何定制企业专属AI大模型?》

    行行AI人才是博客园和顺顺智慧共同运营的AI行业人才全生命周期服务平台. 每个企业定制专属AI大模型的目的都不同,比如某企业希望通过AI技术提升其客户服务和销售效果.该企业面临着庞大的商品数据.用户评 ...

  8. go select 使用总结

    转载请注明出处: 在Go语言中,select语句用于处理多个通道的并发操作.它类似于switch语句,但是select语句用于通信操作,而不是条件判断.select语句会同时监听多个通道的操作,并选择 ...

  9. 脱发秘籍:前端Chrome调试技巧汇总

    Chrome浏览器调试工具的核心功能: 注:本文测试.截图均为Edge浏览器(内核是Chromium),浏览器内核可了解<有哪些浏览器/内核?> 00.基础操作汇总 操作类型 快捷键/说明 ...

  10. 从零实现的Chrome扩展

    从零实现的Chrome扩展 Chrome扩展是一种可以在Chrome浏览器中添加新功能和修改浏览器行为的软件程序,例如我们常用的TamperMonkey.Proxy SwitchyOmega.AdGu ...