(模板)Manacher算法:线性时间求字符串内回文子串的数量
已通过leetcode647:https://leetcode-cn.com/problems/palindromic-substrings/
void get_d(vector<int> & d, const string & s)
{
//l r 为维护的最靠右的回文串边界
int n = s.size(), l = 0, r = -1;
for(int i = 0; i < n; ++i)
{
//在边界内,刚处理完i-1,最差情况是l == r == i-1
//所以一定i>l,k是初始确定的以i为中心的回文串半径(数量)
int k = i > r ? 1 : min(d[l + r - i], r - i + 1);
while(i + k < n && i - k >= 0 && s[i-k] == s[i+k])
++k;
d[i] = k--; //循环的条件被k破坏,出来后要k--
if(i + k > r)
{
r = i+k;
l = i-k;
}
}
}
int manacher(const string &s)
{
int n = s.size();
//d1[i]为以i为中心的回文串(长度为奇数)数量,
vector<int> d1(n);
get_d(d1, s);
//辅助字符串,统一处理偶数长度的回文串
string s2(n*2+1, ' ');
for(int i = 0, j = 1; i < n; ++i, j+=2)
s2[j] = s[i];
vector<int> d2(n), d3(2*n+1);
get_d(d3, s2);
for(int i = 2, j = 0; j < n; ++j, i+=2)
d2[j] = (d3[i] - 1)/2;
int sum = 0;
for(int i = 0; i < n; ++i)
sum += d1[i] + d2[i];
return sum;
}
(模板)Manacher算法:线性时间求字符串内回文子串的数量的更多相关文章
- Manacher算法 O(n) 求最长回文子串
转自:http://bbs.dlut.edu.cn/bbstcon.php?board=Competition&gid=23474 其实原文说得是比较清楚的,只是英文的,我这里写一份中文的吧. ...
- PAT甲题题解-1040. Longest Symmetric String (25)-求最长回文子串
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789177.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- Manacher模板( 线性求最长回文子串 )
模板 #include<stdio.h> #include<string.h> #include<algorithm> #include<map> us ...
- Manacher算法——求最长回文子串
首先,得先了解什么是回文串.回文串就是正反读起来就是一样的,如“abcdcba”.我们要是直接采用暴力方法来查找最长回文子串,时间复杂度为O(n^3),好一点的方法是枚举每一个字符,比较较它左右距离相 ...
- Manacher 求最长回文子串算法
Manacher算法,是由一个叫Manacher的人在1975年发明的,可以在$O(n)$的时间复杂度里求出一个字符串中的最长回文子串. 例如这两个回文串“level”.“noon”,Manacher ...
- Manacher算法(马拉车)求最长回文子串
Manacher算法求最长回文字串 算法思路 按照惯例((・◇・)?),这里只是对算法的一些大体思路做一个描述,因为找到了相当好理解的博客可以参考(算法细节见参考文章). 一般而言,我们的判断回文算法 ...
- #1589 : 回文子串的数量(Manacher)
#1589 : 回文子串的数量 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个字符串S,请统计S的所有|S| * (|S| + 1) / 2个子串中(首尾位置不 ...
- Hihocoder #1602 : 本质不同的回文子串的数量 manacher + BKDRhash
#1602 : 本质不同的回文子串的数量 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个字符串S,请统计S的所有子串中,有多少个本质不同的回文字符串? 注意如果 ...
- hdu 3068 最长回文(manachar求最长回文子串)
题目连接:hdu 3068 最长回文 解题思路:通过manachar算法求最长回文子串,如果用遍历的话绝对超时. #include <stdio.h> #include <strin ...
- 【HIHOCODER 1589】回文子串的数量(Manacher)
描述 给定一个字符串S,请统计S的所有|S| * (|S| + 1) / 2个子串中(首尾位置不同就算作不同的子串),有多少个是回文字符串? 输入 一个只包含小写字母的字符串S. 对于30%的数据,S ...
随机推荐
- JS数字转为带有逗号的字符串
alert(formatNum(10000000.87)); /** * @param n 输入数字 * @param is_int 是否只显示整数 * @returns {string} */ fu ...
- 精读JavaScript模式(九),JS类式继承与现代继承模式其二
壹 ❀ 引 二零一九年的三月二十号,我记录了精读JavaScript模式(八)这篇读书笔记,今天是二零二零年三月十五号,相差五天,其实也算时隔一年,我重新拿起了这本书.当前为什么没继续写下去呢,主要还 ...
- CF1826D Running Miles
题目链接 题解 知识点:贪心,前缀和,枚举. 首先考虑一个贪心结论,选择区间端点一定是两个最大值,因此 \(i_1 = l,i_3 = r\) . 考虑变形式子 \((b_l + l) + b_{i_ ...
- win32-ReadProcessMemory 的使用
std::vector<std::byte> ReadBytes(PVOID address, SIZE_T length) { std::vector<std::byte> ...
- 配置kube-apiserver基于token的认证机制
Kubernetes除了提供了基于CA证书的认证方式,也提供了基于HTTP Token的简单认证方式.各客户端组件与API Server之间的通信方式仍然采用HTTPS,但不采用CA数字证书.这种认证 ...
- 进度条模块之tqdm
导入模块 from tqdm import tqdm import time ''' desc 描述 ncols 进度条总长度 可修改 range(1000) 封装迭代器 ''' for i in t ...
- 03-Redis系列之-高级用法详解
慢查询 生命周期 我们配置一个时间,如果查询时间超过了我们设置的时间,我们就认为这是一个慢查询. 慢查询发生在第三阶段 客户端超时不一定慢查询,但慢查询是客户端超时的一个可能因素 两个配置 slowl ...
- OFDM系统各种QAM调制阶数在多径信道下的误码性能仿真(暂存版本)
本文考虑OFDM系统在多径信道下的误码性能 代码 clc;close all;clear %% Seting parameters EbN0_list = 20:2:40; Q_order_list ...
- 【Azure App Service】误删除App Service资源,怎么办?
问题描述 操作不当,误删除了App Service的资源,怎么办? 问题解答 根据Azure 官方文档,可以使用 Powershell 命令恢复到原始 App Service 应用名称. 操作步骤 第 ...
- 【Azure Redis 缓存】遇见Azure Redis不能创建成功的问题:至少一个资源部署操作失败,因为 Microsoft.Cache 资源提供程序未注册。
问题描述 在中国区微软云上创建Redis失败.收到的错误消息为: { "code": "DeploymentFailed", "message&quo ...