PS:要转载请注明出处,本人版权所有。

PS: 这个只是基于《我自己》的理解,

如果和你的原则及想法相冲突,请谅解,勿喷。

前置说明

  本文作为本人csdn blog的主站的备份。(BlogID=077)

  本文发布于 2019-01-08 17:41:05,现用MarkDown+图床做备份更新。blog原图已丢失,使用csdn所存的图进行更新。(BlogID=077)

环境说明

  无

背景


  参考前置文章:《一个简单的RTMP服务器实现 --- RTMP与H264》https://blog.csdn.net/u011728480/article/details/85770696

前置知识


  《一个简单的RTMP服务器实现 --- RTMP与H264》:https://blog.csdn.net/u011728480/article/details/85770696

  《一个简单的RTMP服务器实现 --- RTMP与FLV》:https://blog.csdn.net/u011728480/article/details/85780974

RTMP简介


  RTMP是Real Time Messaging Protocol的简写。RTMP是应用层协议,其是基于TCP实现的。

  网上有许多介绍RTMP基础知识的地方,本文不重复介绍。但是如果有人对以下概念不熟悉的,建议去随意找一篇翻译《rtmp_specification_1.0.pdf》的文章即可。

  阅读本文需要找一篇RTMP的详细知识总结,一起配合阅读。

RTMP基本知识要点


Chunk 、ChunkStream和ChunkStreamID

  Chunk是RTMP的一种应用层分包结构。

  ChunkStream是一种逻辑通道,代表的是RTMP Message分包为Chunk之后的传输的一种数据流。可从服务器到客户端,反之亦然。

  ChunkStreamID是描述ChunkStream的一个ID,消息拆包为Chunk后,可根据此ID的标识来组合Message。其取值范围为3~65599(2^16 -1 + 2 ^6 -1)。0代表2byte形式ChunkbasicHeader,1代表3byte形式ChunkbasicHeader。2代表是控制消息和命令的流。

  下图为chunkbasicheader格式图:

  下图为chunk格式图:

Message、MessageStream和MessageStreamID

  Message是RTMP协议的基本数据结构。绝大部分RTMP协议的数据发送都必须按照此结构来封装。

  MessageStream也是一种逻辑通道,它描述的是一种消息流。根据抓包结果显示,基本的消息通信为一种消息流,音视频消息通信为另外一种流。这种逻辑流在RTMP播放过程中一定要注意。

  MessageStreamID是一种表示MessageStream的ID。

  Message有多种结构,由chunkbasicheader中fmt字段决定,有如下四种格式:

  type0

  type1

  type2

  type3, 没有头结构。

Message ~ Control Message

  控制消息是一些设置属性的消息。他们的MessageTypeId是1-7.

  1. MessageTypeId==1,设置Chunk分包大小,默认为128bytes
  1. MessageTypeId==2,终止消息,如果一个消息正在被等待接收完毕(Chunk分包没有接收完毕),那么本消息用于放弃这个消息的等待。
  1. MessageTypeId==3,确认消息。本消息用于发送本客户端接收到了多少数据。
  1. MessageTypeId==4,用户控制报文信息。具体用户控制报文看后文

  用户控制报文协议中Stream Begin是实现RTMP的播放的重要的一个报文。详情参考RTMP官方文档,及其他参考资料。

  1. MessageTypeId==5,发送窗口确认大小信息。用于设置窗口大小,达到这个值后,回复确认信息。
  1. MessageTypeId==6,设置对端带宽信息。如果,携带的确认窗口信息大小和之前不一致,要回应一个确认窗口信息大小。反之,不回应。
  1. MessageTypeId==7 ,保留。
Message ~ Command Message

MessageTypeId==17或者20. 17对应的格式是AMF3,20对应的格式是AMF0.

connect, createStream, publish, play, pause等命令是非常重要的。特别注意其中的事物ID,这个ID是关键。

Message ~ Data message

MessageTypeId==18或者15. 18对应的格式是AMF0。15对应的格式是AMF3.

Metadata的发送,就要靠此类型的消息。

Message ~ Shared object message

MessageTypeId==19或者16,19对应格式是AMF0,16对应的格式是AMF3.

Message ~ Audio message

MessageTypeId==8 音频数据

Message ~ Video message

MessageTypeId==9 视频数据

Message ~ Aggregate message

MessageTypeId==22 聚集消息数据

NetConnection相关命令

  NetConnection相关的命令是用于处理RTMP连接方面的问题,当使用命令createstream后,就会创建成功一个流了,就会切换到NetStream相关命令下工作。

  本文的服务器用了的命令为connect、createstream等等。

  具体用法可看下文抓包分析,特别是这些命令的的回应,是本文的重点。

NetStream相关命令

  本文的服务器用了命令为play、pause等等。

  具体用法可看下文抓包分析,特别是这些命令的的回应,是本文的重点。

AMF0和AMF3格式

  这种格式是用来序列化相关数据的。具体参考其他文章。

RTMP 通信流程分析(理论和抓包结合)


RTMP 简单握手(此种握手为造成一个坑爹的问题,具体看文末注意事项。)

  c0和s0结构:

  c0和s0实际抓包:

  C1和S1结构:

  zero字段必须为0.

  random区域长度为1528bytes的随机数。

  C1和S1实际抓包:

  从图中可以看出,我服务器回应的随机字节基本都是0。

  C2和S2实际抓包:

  图中可以看出,S2C1。同理C2S1。

  简单握手时序图:

  实际过程中,C0和C1一起发送,服务器一起回应S0,S1,S2。当握手完毕后,就会进入下一阶段。

RTMP 连接及响应

  首先给出连接及响应时序图:

  Command Message 之 connect

  从这里可以看到,connect命令携带了rtmp流地址的属性以及相关的版本。关于这个命令的重点其实是其事物ID的值是1。

  作为connect的回应,这里一般来说有如下几个基本消息需要发送:

  • 确认窗口大小信息
  • 设置带宽信息
  • 设置Chunk分包大小

  最终,我们需要对connect命令进行回应,如果不回应或者回应错误,将不会走到下一步。

  _result命令:

  这里的一个重点是事物ID必须为1,表示对connect的回应。

  其次,携带的object必须包含connect的状态回应属性,如:NetConnection.Connect.Success和Connection succeeded.等等

  当客户端收到connect 的回应后,客户端发送createstream命令,服务端收到createstream命令后,发送createstream响应命令。

  注意画框部分的事物ID,同时也注意回应命令中,数字为1的流ID,这个值代表的是对于本次连接,MessageStreamID必须为此值。对于本连接来说,后续所有需要发送MessageStreamID的地方必须填写此值,才能够完成相关通信。

RTMP 播放及响应命令

  播放时序图:

  当创建流成功后,客户端会发送一个play命令:

  这里需要注意的是事物ID为0,且包含要播放那个视频流的属性。这里的test就是这个地址里面的rtmp://xxx.xxx.xxx.xxx/live/test

  这个时候服务器会设置相应的属性:如设置chunk大小等等。同时服务器会回应用户控制消息streambegin。

  最后服务器会回应play命令:

  这个时候,其实就是可以发送媒体数据了,但是根据抓包结果显示,还需要这个数据:

RTMP传输音视频

  在传输音视频之前,必须先传输onMetaData(参考flv一文)数据。

  然后可以传输音视频数据了,

  但是传输普通的音视频数据之前,必须传输相关的配置数据。对于h264视频来说,就是flv一文中的AVCDecoderConfigurationRecord 的videotag数据。然年即可传输普通的音视频数据。

  注意:在创建成功一个流之后,发送的媒体数据中的MessageStreamID必须为上文createstream 返回的值。

注意:如果严格按照上文实现,就可以用vlc或者plotplayer等等播放对应的RTMP流。但是,Flash网页播放器一定不能够播放(具体表现为所有都工作正常,只是页面没有画面,像没有接收到数据一样)。原因是简单握手导致的。

后记


  总结:

  1. 根据官方文档实现相关功能后,如果没有达到预期效果,别急慢慢排查。至少我是这样的,别把思路搞混了就行了。
  2. 还有一个教训就是:相信自己,要敢于怀疑别人的资料是错的。

参考文献

  • rtmp_specification_1.0.pdf

打赏、订阅、收藏、丢香蕉、硬币,请关注公众号(攻城狮的搬砖之路)

PS: 请尊重原创,不喜勿喷。

PS: 要转载请注明出处,本人版权所有。

PS: 有问题请留言,看到后我会第一时间回复。

一个简单的RTMP服务器实现 --- RTMP实现要点的更多相关文章

  1. 自己动手模拟开发一个简单的Web服务器

    开篇:每当我们将开发好的ASP.NET网站部署到IIS服务器中,在浏览器正常浏览页面时,可曾想过Web服务器是怎么工作的,其原理是什么?“纸上得来终觉浅,绝知此事要躬行”,于是我们自己模拟一个简单的W ...

  2. 一个简单的web服务器

    写在前面 新的一年了,新的开始,打算重新看一遍asp.net本质论这本书,再重新认识一下,查漏补缺,认认真真的过一遍. 一个简单的web服务器 首先需要引入命名空间: System.Net,关于网络编 ...

  3. [置顶] 在Ubuntu下实现一个简单的Web服务器

    要求: 实现一个简单的Web服务器,当服务器启动时要读取配置文件的路径.如果浏览器请求的文件是可执行的则称为CGI程序,服务器并不是将这个文件发给浏览器,而是在服务器端执行这个程序,将它的标准输出发给 ...

  4. Tomcat剖析(二):一个简单的Servlet服务器

    Tomcat剖析(二):一个简单的Servlet服务器 1. Tomcat剖析(一):一个简单的Web服务器 2. Tomcat剖析(二):一个简单的Servlet服务器 3. Tomcat剖析(三) ...

  5. Tomcat剖析(一):一个简单的Web服务器

    Tomcat剖析(一):一个简单的Web服务器 1. Tomcat剖析(一):一个简单的Web服务器 2. Tomcat剖析(二):一个简单的Servlet服务器 3. Tomcat剖析(三):连接器 ...

  6. 自己模拟的一个简单的web服务器

    首先我为大家推荐一本书:How Tomcat Works.这本书讲的很详细的,虽然实际开发中我们并不会自己去写一个tomcat,但是对于了解Tomcat是如何工作的还是很有必要的. Servlet容器 ...

  7. java实现一个简单的Web服务器

    注:本段内容来源于<JAVA 实现 简单的 HTTP服务器> 1. HTTP所有状态码 状态码 状态码英文名称 中文描述 100 Continue 继续.客户端应继续其请求 101 Swi ...

  8. 响应式编程笔记三:一个简单的HTTP服务器

    # 响应式编程笔记三:一个简单的HTTP服务器 本文我们将继续前面的学习,但将更多的注意力放在用例和编写实际能用的代码上面,而非基本的APIs学习. 我们会看到Reactive是一个有用的抽象 - 对 ...

  9. 转:【专题十二】实现一个简单的FTP服务器

    引言: 休息一个国庆节后好久没有更新文章了,主要是刚开始休息完心态还没有调整过来的, 现在差不多进入状态了, 所以继续和大家分享下网络编程的知识,在本专题中将和大家分享如何自己实现一个简单的FTP服务 ...

  10. 使用gitblit搭建一个简单的局域网服务器

    使用gitblit搭建一个简单的局域网服务器 1.使用背景 现在很多使用github管理代码,但是github需要互联网的支持,而且私有的git库需要收费.有一些项目的代码不能外泄,所以,搭建一个局域 ...

随机推荐

  1. Java - CodeForces - 469C

    题目: 现在有一个容器,里面有n个物品,编号为1-n,现在小q可以进行一些操作,每次取出任意两个数,可以把这两个数的编号相加,相减,相乘,再把结果放回容器.问最后小q能否在n-1次操作后使得容器里的唯 ...

  2. 文心一言 VS 讯飞星火 VS chatgpt (198)-- 算法导论14.3 6题

    六.用go语言,说明如何来维护一个支持操作MIN-GAP的一些数的动态集Q,使得该操作能给出Q中两个最接近的数之间的差值.例如,Q=(1,5,9,15,18,22),则MIN-GAP返回18-15=3 ...

  3. [刺客伍六七&黑客] 魔刀千刃evilblade的使用手册与开源

    0x00 前言 2023.8.15 夜里 非常欢迎使用我的魔刀千刃,并且欢迎各位师傅对我的开源代码进行指导! -–Offense without defense, unparalleled in th ...

  4. P1405 苦恼的小明 题解

    题目传送门 前置知识 扩展欧拉定理 解法 本题幂塔是有限层的,这里与 luogu P4139 上帝与集合的正确用法 中的无限层幂塔不同,故需要在到达递归边界 \(n+1\) 时进行特殊处理,对于处理 ...

  5. Python递归遍历目录并删除文件中的前N行

    1 import os 2 3 # 遍历目录下的所有文件 4 def check_file(file_path): 5 os.chdir(file_path) 6 print(os.path.absp ...

  6. 基于keras的残差网络

    1 前言 理论上,网络层数越深,拟合效果越好.但是,层数加深也会导致梯度消失或梯度爆炸现象产生.当网络层数已经过深时,深层网络表现为"恒等映射".实践表明,神经网络对残差的学习比对 ...

  7. 解决Springboot发起https请求报错:sun.sec urity.validator.ValidatorException: PKIX path building failed

    问题描述 最近开发项目中在springboot接口中调用第三方https接口,后台日志报错: sun.sec urity.validator.ValidatorException: PKIX path ...

  8. 之前练手使用基于gin的go web项目

    目录结构: `-- demo |-- cmd | |-- api.go | `-- root.go |-- common | `-- consts | `-- consts.go |-- config ...

  9. 使用winsw将jar包注册成windows服务

    使用winsw将jar包注册成windows服务 注:exe文件作用:使用winsw将jar包注册成windows服务(下载地址https://github.com/winsw/winsw/relea ...

  10. node版本管理工具nvm的安装及使用

    一.什么是nvm nvm是一个node版本管理工具. 由于不同项目依赖的node版本可能不同,所以在维护多个项目时通常需要使用不同的node版本,这时候用nvm来切换不同的node版本就很方便. 官方 ...