TopCoder 15903 EllysNim
TopCoder 15903 EllysNim(https://vjudge.net/problem/TopCoder-15903)
\(n\)看似有点东西,实际上就只是一个贪心。。。
设\(i\)表示第\(i\)位,且\(i\)从\(0\)开始计数
那么我们肯定是让\(i\)从高位到低位枚举,若当前位的异或值为\(1\),想办法让它变成\(0\)且不会改变更高位的异或值
首先,若我们想改变第\(i\)位的异或值,那么最优的方法肯定是将一个第\(i\)位为\(0\)的数的后\(i+1\)位加成\(2^i\),选多个肯定不如选一个优,设这个数的后\(i+1\)位为\(a\),那么代价就是\(2^i-a\),这样也不会对更高的位造成影响
但我们的选择多半不只有一个\(a\),假设当前有两个数,它们都是合法的且对应的后\(i+1\)位分别为\(a\)和\(b\)(\(a<b\)),如果我们把\(a\)变成\(2^i\)花费\(2^i-a\)的代价不如将\(b\)变成\(2^i\)花费\(2^i-b\)的代价,至少仅在第\(i\)位看起来是正确的,如果在后面的操作中,我们发现其实第\(i\)位选\(a\)优于\(b\),我们也可以反悔,因为我们可以将\(a\)变成\(b\)花费\(b-a\)的代价,这样总的代价就还是\(2^i-a\),也就是相当于我们将第\(i\)位选的数字从\(b\)变成了\(a\),而且现在还有了一个可以自由支配的\(b\),那么就和我们一开始舍弃的把\(a\)变成\(2^i\),\(b\)留下的方案一样了,这样就是一个反悔贪心
然后具体的,当从\(a\)变成\(b\)的时候,就是在第\(j\)位(\(j<i\)且\(2^j\geq b\),因为\(2^j\geq b\)所以此时只看后\(j+1\)位的话\(a\)和\(b\)都不变)选到\(a\)时,即此时剩下的所有数中,\(a\)是合法且后\(j+1\)位最大的,此时\(a\)变成\(2^j\),就相当于\(a\rightarrow b\rightarrow 2^j\),若不满足这些条件,就说明反悔了答案更劣,所以不反悔
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=105;
int n;
ll b[N],xorr,now,ans=1e18,t;
bool work(int lim){
ll s=(1ll<<lim)-1; int pos=n;
for(int i=0;i<n;++i) if(!(b[i]>>lim&1)&&(b[i]&s)>=(b[pos]&s)) pos=i;
if(pos==n) return false;
now^=b[pos],t+=(1ll<<lim)-(b[pos]&s),b[pos]=1ll<<lim;
return true;
}
class EllysNim{
public:
ll getMin(vector<int> a){
n=a.size();
for(int i=0;i<n;++i) xorr^=a[i];
if(!xorr) return 0;
for(int i=30;~i;--i){
if(xorr>>(i+1)) break;
now=xorr,t=0;
for(int j=0;j<n;++j) b[j]=a[j];
for(int j=i;~j;--j){
if((now>>j&1)||i==j){
if(!work(j)){
t=1e18;
break;
}
if(i==j&&!(now>>j&1)&&!work(j)){
t=1e18;
break;
}
}
}
ans=min(ans,t);
}
return ans;
}
};
TopCoder 15903 EllysNim的更多相关文章
- TopCoder kawigiEdit插件配置
kawigiEdit插件可以提高 TopCoder编译,提交效率,可以管理保存每次SRM的代码. kawigiEdit下载地址:http://code.google.com/p/kawigiedit/ ...
- 记第一次TopCoder, 练习SRM 583 div2 250
今天第一次做topcoder,没有比赛,所以找的最新一期的SRM练习,做了第一道题. 题目大意是说 给一个数字字符串,任意交换两位,使数字变为最小,不能有前导0. 看到题目以后,先想到的找规律,发现要 ...
- TopCoder比赛总结表
TopCoder 250 500 ...
- Topcoder几例C++字符串应用
本文写于9月初,是利用Topcoder准备应聘时的机试环节临时补习的C++的一部分内容.签约之后,没有再进行练习,此文暂告一段落. 换句话说,就是本文太监了,一直做草稿看着别扭,删掉又觉得可惜,索性发 ...
- TopCoder
在TopCoder下载好luncher,网址:https://www.topcoder.com/community/competitive%20programming/ 选择launch web ar ...
- TopCoder SRM 596 DIV 1 250
body { font-family: Monospaced; font-size: 12pt } pre { font-family: Monospaced; font-size: 12pt } P ...
- 求拓扑排序的数量,例题 topcoder srm 654 div2 500
周赛时遇到的一道比较有意思的题目: Problem Statement There are N rooms in Maki's new house. The rooms are number ...
- TopCoder SRM 590
第一次做TC,不太习惯,各种调试,只做了一题...... Problem Statement Fox Ciel is going to play Gomoku with her friend ...
- Topcoder Arena插件配置和训练指南
一. Arena插件配置 1. 下载Arena 指针:http://community.topcoder.com/tc?module=MyHome 左边Competitions->Algorit ...
- [Topcoder]AvoidRoads(dp,hash)
题目连接:https://community.topcoder.com/stat?c=problem_statement&pm=1889&rd=4709 题意:给一张n*m的地图,上面 ...
随机推荐
- 痞子衡嵌入式:从功耗测试角度了解i.MXRTxxx系列片内SRAM分区电源控制
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是从功耗测试角度了解i.MXRTxxx系列片内SRAM分区电源控制. 我们知道配合 MCU 一起工作的存储器包含 ROM(Flash) 和 ...
- 微信小程序 npm包、全局数据共享、分包
[黑马程序员前端微信小程序开发教程,微信小程序从基础到发布全流程_企业级商城实战(含uni-app项目多端部署)] https://www.bilibili.com/video/BV1834y1676 ...
- H5 WebGL实现水波特效
前言 零几年刚开始玩电脑的时候,经常在安装程序上看到一种水波特效,鼠标划过去的时候,就像用手在水面划过一样,感觉特别有意思.但是后来,就慢慢很少见过这种特效了.最近突然又想起了这种特效,于是开始折磨怎 ...
- 【Docker】部署Tomcat
搜索镜像 $ docker search 镜像名称:镜像TAG # 如: 没有加TAG,表示默认搜索的是最新版本的tomcat镜像 $ docker search tomcat # 如:搜索 tomc ...
- Day12_Java_作业
1:需求:请设计一个方法,可以实现获取任意范围内的随机数. package student; import java.util.Random; import java.util.Scanner; /* ...
- .Net FrameWork下面如何生成AOT呢?
前言 其实AOT预编译,在.Net FrameWorker1.0里面就有了.它叫做Ngen,只不过当时叫做生成本机映像,实际上还是一个东西,也就是预编译.本篇来看下. 概括 1.介绍 现在的现代化的. ...
- Java 调用gdal API(二)——栅格裁剪
gdal可以说是GIS数据处理比较好的工具之一,虽然也提供了Java API,但是官方文档确实太过简单,用起来确实太难受,每次都需要去参考对应的C++api,然后在对应使用. 因此小编决定从这篇文章开 ...
- jdk安装自动化
写个在linux环境安装Java的脚本(install_java.sh),只需将jdk上传至/opt目录下,执行脚本即可. #!/bin/bash #author:zhangyl #本安装使用jdk版 ...
- quarkus数据库篇之二:无需数据库也能运行增删改查(dev模式)
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本篇内容并非数据库相关的核心知识,而是对一个 ...
- 9、Spring之代理模式
9.1.环境搭建 9.1.1.创建module 9.1.2.选择maven 9.1.3.设置module名称和路径 9.1.4.module初始状态 9.1.5.配置打包方式和依赖 <?xml ...