前置知识

中国剩余定理(CRT),逆元;

EXCRT是什么

我们知道,对于

对于

\[\begin{equation}
\begin{cases}
x \equiv c_1 \ (mod \ m_1) \\
x \equiv c_2 \ (mod \ m_2) \\
.\\
.\\
.\\
x \equiv c_i \ (mod \ \ m_i) \\
\end{cases}
\end{equation}
\]

一个一元线性同余方程组,GCT适用于模数是质数的情况,如果模数不是质数,就要用到EXGCT了;

EXCRT证明及用法

证明

首先,联立前两个式子,得

\[\begin{equation}
\begin{cases}
x \equiv c_1 \ (mod \ m_1) \\
x \equiv c_2 \ (mod \ m_2) \\
\end{cases}
\end{equation}
\]

进而

\[x = c_1 + m_1k_1 = c_2 + m_2k_2
\]
\[c_1 + m_1k_1 = c_2 + m_2k_2
\]
\[m_1k_1 = c_2 - c_1 + m_2k_2
\]

等式两边同除以$ gcd(m_1, m_2) $, 得:

\[\frac{m_1}{gcd(m_1, m_2)}k_1 = \frac{c_2 - c_1}{gcd(m_1, m_2)} + \frac{m_2}{gcd(m_1, m_2)}k_2
\]
\[\frac{m_1}{gcd(m_1, m_2)}k_1 \equiv \frac{c_2 - c_1}{gcd(m_1, m_2)} \ (mod \ \frac{m_2}{gcd(m_1, m_2)})
\]

到这里,我们就把 \(k_2\) 消掉了;

根据同余式的同乘性,同余式两边同除 $ \frac{m_1}{gcd(m_1, m_2)} $,得( $ x^{-1} $ 代表 $ x $ 在模意义下的逆元):

\[k_1 \equiv \frac{c_2 - c_1}{gcd(m_1, m_2)} \ * \ (\frac{m_1}{gcd(m_1, m_2)})^{-1} \ (mod \ \frac{m_2}{gcd(m_1, m_2)})
\]
\[k_1 = \frac{c_2 - c_1}{gcd(m_1, m_2)} \ * \ (\frac{m_1}{gcd(m_1, m_2)})^{-1} \ + \ y \ * \ \frac{m_2}{gcd(m_1, m_2)}
\]

$ y $ 是整数;

将 $ k_1 $ 带回 $ x = c_1 + m_1k_1 $ 中,得:

注意,下面的 $ (\frac{m_1}{gcd(m_1, m_2)})^{-1} $ 指的都是其在mod\(\frac{m_2}{gcd(m_1, m_2)}\) 下的逆元!

\[x = m_1\frac{c_2 - c_1}{gcd(m_1, m_2)} \ * \ (\frac{m_1}{gcd(m_1, m_2)})^{-1} \ + \ c_1 \ + \ y \ * \ \frac{m_1m_2}{gcd(m_1, m_2)}
\]
\[x \equiv m_1\frac{c_2 - c_1}{gcd(m_1, m_2)} \ * \ (\frac{m_1}{gcd(m_1, m_2)})^{-1} \ + \ c_1 \ (mod \ \frac{m_1m_2}{gcd(m_1, m_2)})
\]

其中,$ \frac{m_1m_2}{gcd(m_1, m_2)} = lcm(m1, m2)$;

到这,我们可以将最后一个式子与 $ x \equiv c_2 \ (mod \ m_2) $ 联立,以此类推,进行递归求解;

无解情况

显然,式子中的每个系数都应是整数,所以 $ c_2 - c_1 $ 应该能整除 $ gcd(m_1, m_2) $,若不能整除,则无解;

例题

Strange Way to Express Integers

板子;

#include <iostream>
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
__int128 read() {
__int128 x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {
if (ch == '-') f = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = x * 10 + ch - '0';
ch = getchar();
}
return x * f;
} void out(__int128 x) {
if (x < 0) putchar('-'), x = -x;
if (x > 9) out(x / 10);
putchar(x % 10 + '0');
}
long long n;
__int128 m[1000005], c[1000005];
__int128 gcd(__int128 a, __int128 b) {
if (b == 0) return a;
else return gcd(b, a % b);
}
__int128 phi(long long nn) {
__int128 mm = sqrt(nn);
__int128 ans = nn;
for (__int128 i = 2; i <= mm; i++) {
if (nn % i == 0) {
ans = ans / i * (i - 1);
while(nn % i == 0) nn /= i;
}
}
if (nn > 1) ans = ans / nn * (nn - 1);
return ans;
}
__int128 qpow(__int128 a, __int128 b, __int128 p) {
__int128 ans = 1;
while(b) {
if (b & 1) ans = ans * a % p;
a = a * a % p;
b >>= 1;
}
return ans;
}
inline __int128 inv(__int128 a, long long b) {
__int128 pb = phi(b);
return qpow(a, pb - 1, b);
}
int main() {
while(scanf("%lld", &n) != EOF) {
bool v = true;
for (int i = 1; i <= n; i++) {
m[i] = read();
c[i] = read();
}
for (int i = 2; i <= n; i++) {
__int128 m1 = m[i - 1], m2 = m[i], c1 = c[i - 1], c2 = c[i];
__int128 g = gcd(m1, m2);
if ((c2 - c1) % g != 0) {
printf("%d\n", -1);
v = false;
break;
}
m[i] = (m1 * m2) / g;
c[i] = inv(m1 / g, (long long)m2 / g) * (c2 - c1) / g * m1 + c1;
c[i] = (c[i] % m[i] + m[i]) % m[i];
}
if (!v) continue;
out(c[n]); //最后c[n]为答案,且c[n]是答案中最小的,因为其已经mod了所有m[i];
printf("\n");
}
return 0;
}

扩展中国剩余定理证明及例题 Strange Way to Express Integers的更多相关文章

  1. 中国剩余定理+扩展中国剩余定理 讲解+例题(HDU1370 Biorhythms + POJ2891 Strange Way to Express Integers)

    0.引子 每一个讲中国剩余定理的人,都会从孙子的一道例题讲起 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何? 1.中国剩余定理 引子里的例题实际上是求一个最小的x满足 关键是,其中 ...

  2. 数论F - Strange Way to Express Integers(不互素的的中国剩余定理)

    F - Strange Way to Express Integers Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format: ...

  3. poj 2981 Strange Way to Express Integers (中国剩余定理不互质)

    http://poj.org/problem?id=2891 Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 13 ...

  4. Strange Way to Express Integers(中国剩余定理+不互质)

    Strange Way to Express Integers Time Limit:1000MS Memory Limit:131072KB 64bit IO Format:%I64d & ...

  5. poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   ...

  6. [POJ 2891] Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 10907 ...

  7. poj——2891 Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16839 ...

  8. POJ2891——Strange Way to Express Integers(模线性方程组)

    Strange Way to Express Integers DescriptionElina is reading a book written by Rujia Liu, which intro ...

  9. 一本通1635【例 5】Strange Way to Express Integers

    1635:[例 5]Strange Way to Express Integers sol:貌似就是曹冲养猪的加强版,初看感觉非常没有思路,经过一番艰辛的***,得到以下的结果 随便解释下给以后的自己 ...

  10. POJ2891 Strange Way to Express Integers

    题意 Language:Default Strange Way to Express Integers Time Limit: 1000MS Memory Limit: 131072K Total S ...

随机推荐

  1. XAF新手入门 - 数据字典示例

    前言 通过前面文章的介绍,大家应该对模块与类型信息子系统有所了解,再通过一个示例来加深大家对它的理解. 在准备写这个系列文章之前,就准备是概念+示例的组合,这样大家对概念的理解会更深刻.之前的规划是在 ...

  2. vid = two 切开 分开 - 两个眼睛 还有看的含义 - 词根

    vid = two 切开 分开 - 两个眼睛 还有看的含义 - 词根 vi = wo acs 构词

  3. Vite + Vue3.0 项目初始化

    主要是冷启动,实际中项目非常庞大,现在1w的笔记本,每次冷启动,也得等一下,所以准备转型 Vite+Vue3.0,毕竟Vite不支持Vue2.0,这就只能下个项目的时候再启动了. $ npm init ...

  4. 【图算法】图卷积的演变-从谱图卷积到GCN

    基础 傅里叶变换 傅里叶级数是对周期为T的确定性信号做展开,而傅里叶变换将周期推广到无穷,能对具有任意长度的信号做展开. 傅里叶级数和傅里叶变换是什么关系? 如下为傅里叶变换公式: \[\hat{f} ...

  5. stm32文件系统读写操作调试总结

    一 问题 最近使用到了文件系统的读写,中间遇到了一些问题值得深思.   二 源码解析 创建文件: FRESULT res; do { sprintf(filename,"/sensor_si ...

  6. 逆向通达信Level-2 续六 (调试pad控件)

    调试终端面版单元, 以及宿主窗口 调试大数据面版单元, 以及宿主窗口 逆向通达信Level-2 续十一 (无帐号登陆itrend研究版) 逆向通达信Level-2 续十 (trace脱壳) 逆向通达信 ...

  7. 使用gradle打包springboot项目

    这边整理下自己项目使用gradle打jar包的坎坷经历,使用的方式是命令行的方式 首先配置build.gradle跟我一样 plugins { id 'java' id 'org.springfram ...

  8. idea提交时候忽略改动部分文件

    之前因为本地开发环境和线上开发环境有区别,bootstrap.xml里的log存放位置在我本地mac不存在路径,我就只能通过修改log路径才能让项目跑起来.但是,本地修改的东西每次commit时候都显 ...

  9. 从null-ls归档再看nvim的代码格式化与lint方案

    由于null-lsp的归档和暂停更新,我们需要重新审视并思考还有哪些架构简单易于理解的插件配置方案.本文将介绍脱离null-ls插件体系下的代码格式化和lint的插件配置方案. 在之前的文章中< ...

  10. C++ Concurrency in Action 读书笔记二:用mutex互斥锁保护在线程间共享的数据

    Chapter 3 线程间共享数据 3.2 用互斥锁保护共享数据