Problem Statement

Takahashi has $A$ apple seedlings, $B$ banana seedlings, and $C$ cherry seedlings. Seedlings of the same kind cannot be distinguished.

He will plant these seedlings in his $N$ gardens so that all of the following conditions are satisfied.

  • At least one seedling must be planted in every garden.
  • It is not allowed to plant two or more seedlings of the same kind in the same garden.
  • It is not necessary to plant all seedlings he has.

How many ways are there to plant seedlings to satisfy the conditions? Find the count modulo $998244353$.

Two ways are distinguished when there is a garden with different sets of seedlings planted in these two ways.

Constraints

  • $1 \leq N \leq 5 \times 10^6$
  • $0 \leq A \leq N$
  • $0 \leq B \leq N$
  • $0 \leq C \leq N$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$ $A$ $B$ $C$

Output

Print the answer.


Sample Input 1

2 2 1 1

Sample Output 1

21

As illustrated below, there are $21$ ways to plant seedlings to satisfy the conditions.

(The two frames arranged vertically are the gardens. $A, B, C$ stand for apple, banana, cherry, respectively.)

如果不考虑每个花园中都要种种子的限制,怎么做?

枚举总共会泼洒几个苹果的种子,几个香蕉的种子,几个樱桃的种子,然后用组合数进行计算。用表达式来写就是 \((\sum\limits_{i=0}^aC_n^i)(\sum\limits_{i=0}^bC_n^i)(\sum\limits_{i=0}^cC_n^i)\)

为了方便,设 \(S(n,m)=\sum\limits_{i=0}^mC_n^i\),上面的表达式可以写作 \(S(n,a)\times S(n,b)\times S(n,c)\)

现在要加上每个花园中都要种种子的条件,明显用容斥原理。

定义 \(f(i)\) 为至多有 \(i\) 个花园中有种子的情况数,那么最终答案为 \(f(n)-f(n-1)+f(n-2)-\cdots\)

我们需要快速算出 \(S(n,m)\),但这不太可能有很好的通项公式。如果 \(n\) 为定值,那就处理一个前缀和就可以了,但现在 \(n\) 不为定值, \(m\) 才是。考虑杨辉三角的转移公式,我们可以发现从 \(S(n,m)\) 到 \(S(n+1,m)\) 的路程中,除了 \(C_n^m\),全部算了两次。可以得到转移式子 \(S(n,m)=S(n-1,m)+C_{n-1}^m\)。所以计算 \(m=a,b,c\) 时的答案,套容斥式子就可以了。

#include<cstdio>
const int P=998244353,N=5e6+5;;
int n,a,b,c,f[N],fa[N],fb[N],fc[N],inv[N],iv[N],ans;
int calc(int x,int y)
{
if(x<y)
return 0;
return 1LL*f[x]*iv[y]%P*iv[x-y]%P;
}
int main()
{
scanf("%d%d%d%d",&n,&a,&b,&c);
iv[0]=iv[1]=inv[1]=f[0]=f[1]=1;
for(int i=2;i<=n;i++)
{
inv[i]=1LL*(P-P/i)*inv[P%i]%P;
iv[i]=iv[i-1]*1LL*inv[i]%P;
f[i]=f[i-1]*1LL*i%P;
}
fa[0]=fb[0]=fc[0]=1;
for(int i=1;i<=n;i++)
{
fa[i]=(fa[i-1]*2LL-calc(i-1,a)+P)%P;
fb[i]=(fb[i-1]*2LL-calc(i-1,b)+P)%P;
fc[i]=(fc[i-1]*2LL-calc(i-1,c)+P)%P;
// printf("%d %d %d\n",fa[i],fb[i],fc[i]);
}
for(int i=0;i<=n;i++)
(ans+=(i&1? -1LL:1LL)*calc(n,i)*fa[n-i]%P*fb[n-i]%P*fc[n-i]%P)%=P;
printf("%d",(ans+P)%P);
}

[ABC235G] Gardens的更多相关文章

  1. Vue.js——使用$.ajax和vue-resource实现OAuth的注册、登录、注销和API调用

    概述 上一篇我们介绍了如何使用vue resource处理HTTP请求,结合服务端的REST API,就能够很容易地构建一个增删查改应用.这个应用始终遗留了一个问题,Web App在访问REST AP ...

  2. Vue.js——基于$.ajax实现数据的跨域增删查改

    概述 之前我们学习了Vue.js的一些基础知识,以及如何开发一个组件,然而那些示例的数据都是local的.在实际的应用中,几乎90%的数据是来源于服务端的,前端和服务端之间的数据交互一般是通过ajax ...

  3. Lesson 8 The best and the worst

    Text Joe Sanders has the most beautiful garden in our town. Nearly everbody enters for 'The Nicest G ...

  4. Lesson 3 Please send me a card

    Text Postcards always spoil my holidays. Last summer, I went to Italy. I visited museums and sat in ...

  5. iis

    IIS架构 1.   概述 为了提高IIS的可靠性,安全性以及可用性,与IIS5.0和以前更早的版本不同,IIS6.0提供了一个全新的IIS架构.这个架构的详细情况如下图所示:             ...

  6. Google Maps API V3 之 路线服务

    Google官方教程: Google 地图 API V3 使用入门 Google 地图 API V3 针对移动设备进行开发 Google 地图 API V3 之事件 Google 地图 API V3 ...

  7. Python开发【前端】:jQuery

    jQuery简介 jQuery是一个快速.简洁的JavaScript框架,是继Prototype之后又一个优秀的JavaScript代码库(或JavaScript框架).jQuery设计的宗旨是&qu ...

  8. hihoCoder 1425 : What a Beautiful Lake(美丽滴湖)

    hihoCoder #1425 : What a Beautiful Lake(美丽滴湖) 时间限制:1000ms 单点时限:1000ms 内存限制:256MB Description - 题目描述 ...

  9. Quant的笑话

    Q) Why was the FX quant so unlucky with the ladies?A) Because he always kept his dates short. Q) Why ...

  10. XQuery的 value() 方法、 exist() 方法 和 nodes() 方法

    Xml数据类型 /*------------------------------------------------------------------------------+ #| = : = : ...

随机推荐

  1. 6、Mybatis之高级查询

    6.1.创建接口.映射文件和测试类 ++++++++++++++++++++++++++分割线++++++++++++++++++++++++++ 注意namespace属性值为对应接口的全限定类名 ...

  2. 万字长文硬核AQS源码分析

    阅读本文前,需要储备的知识点如下,点击链接直接跳转. java线程详解 Java不能操作内存?Unsafe了解一下 一文读懂LockSupport AQS简介 AQS即AbstractQueuedSy ...

  3. 如何使用Grid中的repeat函数

    在本文中,我们将探索 CSS Grid repeat() 函数的所有可能性,它允许我们高效地创建 Grid 列和行的模式,甚至无需媒体查询就可以创建响应式布局. 不要重复自己 通过 grid-temp ...

  4. datetime获取当前日期前十二个月份

    from dateutil.parser import parse from dateutil.relativedelta import relativedelta # 当前日期前十二个月 time_ ...

  5. 【题解】AtCoder Beginner Contest 318(D - Ex)

    赛时过了 A-G,Ex 仿佛猜到了结论但是完全不懂多项式科技,就炸了. 大家好像都秒了 A,B,C 就不写了. D.General Weighted Max Matching 题目描述: 给你一个加权 ...

  6. 开源.NetCore通用工具库Xmtool使用连载 - 图形验证码篇

    [Github源码] <上一篇> 介绍了Xmtool工具库中的Web操作类库,今天我们继续为大家介绍其中的图形验证码类库. 图形验证码是为了抵御恶意攻击出现的一种设计:例如用户登录.修改密 ...

  7. 基于百度AI实现文字和图像敏感内容审核

    前言 百度AI是指百度公司的人工智能技术全称.它采用深度学习技术,包括自然语言处理.语音识别.计算机视觉.知识图谱等,可应用于各个领域如互联网.医疗.金融.教育.汽车.物流等.百度AI的发展将帮助人类 ...

  8. IP协议:连接你我,掌握互联网的关键

    IP 基本认识 在之前的章节中,我们已经详细介绍了应用层和传输层的相关概念和原理,了解了进程之间如何进行可靠的数据传输.我们知道,传输层的头部包含了进程所使用的端口信息,这是为了确保数据能够正确地传递 ...

  9. GO语言基础之基本运算符

    GO语言基础之基本运算符 目录 GO语言基础之基本运算符 一.运算符 内置运算符: 二.算术运算符 三.关系运算符 四.逻辑运算符 五.位运算符 六.赋值运算符 一.运算符 作用:运算符用于在程序运行 ...

  10. .NET 8 RC 2 发布,将在11月14日发布正式版

    微软2023-10-10 发布了 .NET 8 RC 2,下一站是.NET 8正式发布,就在下个月Net Conf 2023[1](11月14日)期间正式发布,我们也开始筹备第四届中国.NET开发者峰 ...