本篇为各位朋友介绍基于FPGA的电子琴设计(按键和蜂鸣器)----第一版。

功能说明:

外部输入七个按键,分别对应音符的“1、2、3、4、5、6、7”,唱作do、re、mi、fa、sol、la、si。当某个按键按下时,蜂鸣器发出对应的声音----1. 默认发出0.2秒(可以调整)。2. 蜂鸣器发出对应的中音。

使用平台:本次设计应用Altera的平台设计(芯片:EP4CE10F17C8N)。

仿真平台:Modelsim。

作者QQ:746833924

说明:本篇设计中不涉及到IP和原语,代码在其他平台依然可以适用;当其他板卡电路不同时,会导致不同的现象出现,如有需要修改代码请联系作者;如需作者使用的板卡,请联系作者;

蜂鸣器是一种一体化结构的电子讯响器,采用直流电压供电,广泛应用于计算机、打印机、复印机、报警器、电子玩具、汽车电子设备、电话机、定时器等电子产品中作发声器件。

蜂鸣器主要分为压电式蜂鸣器和电磁式蜂鸣器两种类型。

压电式蜂鸣器 压电式蜂鸣器主要由多谐振荡器、压电蜂鸣片、阻抗匹配器及共鸣箱、外壳等组成。有的压电式蜂鸣器外壳上还装有发光二极管。多谐振荡器由晶体管或集成电路构成。当接通电源后(1.515V直流工作电压),多谐振荡器起振,输出1.52.5kHZ的音频信号,阻抗匹配器推动压电蜂鸣片发声。

电磁式蜂鸣器电磁式蜂鸣器由振荡器、电磁线圈、磁铁、振动膜片及外壳等组成。接通电源后,振荡器产生的音频信号电流通过电磁线圈,使电磁线圈产生磁场。振动膜片在电磁线圈和磁铁的相互作用下,周期性地振动发声。

按照内部有无震荡源可以分为有源蜂鸣器和无源蜂鸣器。有源蜂鸣器内部带震荡源,所以只要一通电就会发出声音;而无源内部不带震荡源,所以如果用直流信号无法令其鸣叫。必须用一定频率的方波去驱动它。

蜂鸣器给予不同的频率是可以发出近似1、2、3、4、5、6、7这七个基本音符。

设计思想如下:

    key_ctrl模块负责将外部的按键信号进行消抖,并且产生对应边沿变化时的脉冲;piano_beep_ctrl模块负责根据脉冲信号产生输出控制脉冲(一个周期)和应该输出音符对应波形的半周期数;beep_ctrl模块根据piano_beep_ctrl产生脉冲时,接收半周期数,然后产生对应的方波持续0.2秒。

key_ctrl模块设计思想为:按键信号是由外部机械式按键产生,每次按下或者抬起时,会产生一定的抖动。如果直接对其进行边沿检测就会导致多次触发。故而需要设计按键消抖,进而对消抖之后的波形进行边沿检测。消抖原理为:外部按键信号发生改变后,如果能够持续20ms,没有新的改变,就认为此次改变不是抖动,而是真正的按下,然后进行采样即可。

// 记录任意边沿之后没有遇到新的边沿的时间长度是否达到20Ms

//---------------------------------------------------------------------------------------

always@(posedgeclk)begin

if(rst_n ==1'b0)

 cnt_20ms <=20'd0;

else

 if(pulse_key_negedge ==1'b1||pulse_key_posedge ==1'b1)

   cnt_20ms <=20'd1;

 else

   if(cnt_20ms >20'd0&&cnt_20ms <T_20ms)

     cnt_20ms <=cnt_20ms +1'b1;

   else

       cnt_20ms <=20'd0;

end

// ---------------------------------------------------------------------------------------

// 任意边沿之后没有遇到新的边沿的时间长度达到20Ms,认为按键稳定,此时采样

//--------------------------------------------------------------------------------------

initial key_wave = 1'b1;

always@(posedgeclk)begin

if(rst_n ==1'b0)

 key_wave <=1'b1;

else

 if(cnt_20ms ==T_20ms)

   key_wave <=key_rr;

 else

   key_wave <=key_wave;

end

//--------------------------------------------------------------------------------------

// 对消抖之后的按键信号进行边沿检测

//---------------------------------------------------------------------------------------------

initialkey_wave_r =1'b1;

always@(posedgeclk)key_wave_r <=key_wave;

assignflag_neg =(key_wave_r ==1'b1&&key_wave ==1'b0)?1'b1:1'b0;

assignflag_pos =(key_wave_r ==1'b0&&key_wave ==1'b1)?1'b1:1'b0;

//--------------------------------------------------------------------------------------------

piano_beep_crtl模块中,计算半周期数的方法如下:

假如要发出中音“1”,就需要输出频率为523.3hz的方波。此方波对应的周期为1910949.742021785 ns,我们取1910950ns。因为我们使用的基本时钟为50MHz,周期为20ns,以及我们预计计数一半取反来生成方波,所以只需要计数一般,即:1910950/2/20 = 47774;

将其他的全部计算出来:

// 1 : 523.3Hz num : 47774

// 2 : 587.3Hz num : 42568

// 3 : 659.3Hz num : 37919

// 4 : 698.5Hz num : 35791

// 5 : 784Hz num : 31888

// 6 : 880Hz num : 28409

// 7 : 987.8Hz num : 25309

// 产生输出脉冲:无论外部那个脉冲有效,都对外产生一个脉冲

always @ (posedge clk) begin

if (rst_n == 1'b0)

 flag <= 1'b0;

else

 flag <= |key_flag;

end

// 如果外部多个脉冲同时有效,那么输出num为0

always @ (posedge clk) begin

if (rst_n == 14'b0)

 num <= 32'd0;

else

 case (key_flag)

   7'b100_0000    :   num <= 32'd47774;

   7'b010_0000    :   num <= 32'd42568;

   7'b001_0000    :   num <= 32'd37919;

   7'b000_1000    :   num <= 32'd35791;

   7'b000_0100    :   num <= 32'd31888;

   7'b000_0010    :   num <= 32'd28409;

   7'b000_0001    :   num <= 32'd25309;

   default        :   num <= 32'd0;

 endcase

end

以上即为piano_beep_ctrl模块的设计思想;

在beep_ctrl中,首先设计一个当输入脉冲时,就让一个计数器cnt_200ms记录0.2秒。

// 外部输入一个脉冲,cnt_200ms计数器记录200ms的时间

// 如果第一个脉冲输入后,没有计时到200ms,第二个脉冲没有任何作用

always @ (posedge clk) begin

if (rst_n == 1'b0)

 cnt_200ms <= 32'd0;

else

 if (flag == 1'b1 && cnt_200ms == 32'd0)

   cnt_200ms <= cnt_200ms + 1'b1;

 else

   if (cnt_200ms > 32'd0 && cnt_200ms < T_200ms - 1'b1)

     cnt_200ms <= cnt_200ms + 1'b1;

   else

     cnt_200ms <= 32'd0;

end

由于外部给予半周期数时,只有一个周期有效,所以需要寄存一下。

//外部输入脉冲时,寄存外部输入的半周期的时钟数

always @ (posedge clk) begin

if (rst_n == 1'b0)

 num_r <= 32'd0;

else

 if (flag == 1'b1 && cnt_200ms == 32'd0)

   num_r <= num;

 else

   num_r <= num_r;

end

当200ms计数器开始计数后,我们启动另外一个计数器ocnt,来记录需要输出方波的半周期数。然后当到半周期数的时候,将输出值取反。

// 当200ms开始计时后,输出计数器开始计数,

// 只需要计数到外部输入的半周期时钟数即可

always @ (posedge clk) begin

if (rst_n == 1'b0)

 ocnt <= 32'd0;

else

 if (cnt_200ms > 32'd0)

   if (ocnt < num_r)

     ocnt <= ocnt + 1'b1;

   else

     ocnt <= 32'd0;

 else

   ocnt <= 32'd0;

end

// 当外部输入的半周期时钟数为0时,蜂鸣器不动作

// 当不为0时,到半周期时钟数,将输出取反

always @ (posedge clk) begin

if (rst_n == 1'b0)

 beep <= 1'b0;

else

 if (num_r == 32'd0)

   beep <= 1'b0;

 else

   if (ocnt == num_r)

     beep <= ~beep;

   else

     beep <= beep;

end

以上即为所有的设计说明。

仿真时,需要将消抖模块中的20ms进行调小,否则仿真的时长将会格外的长。

下板后,经过按下不同的按键,蜂鸣器就可以产生对应的声音。

下板后,演示视频(链接)如下:

https://www.bilibili.com/video/BV1Gk4y1X7XT/?spm_id_from=333.999.0.0&vd_source=b5405faeab8632f02533bcbfc5e52e55

 本设计所有内容(设计代码、设计工程)链接为:

链接:https://pan.baidu.com/s/1VGbPqU9O_k2UBtOGkMJjIQ

提取码:dzye

本篇内容中有部分资源来源于网络,如有侵权,请联系作者。

更多的内容可以关注作者的其他博客,也可以关注微信公众账号:郝旭帅电子设计团队

基于FPGA的电子琴设计(按键和蜂鸣器)---第一版---郝旭帅电子设计团队的更多相关文章

  1. 基于FPGA的DDR3多端口读写存储管理系统设计

    基于FPGA的DDR3多端口读写存储管理系统设计 文章出处:电子技术设计 发布时间: 2015/03/12 | 1747 次阅读 每天新产品 时刻新体验专业薄膜开关打样工厂,12小时加急出货   机载 ...

  2. 基于FPGA的按键扫描程序

    最近在学习FPGA,就试着写了个按键扫描的程序.虽说有过基于单片机的按键扫描处理经验,对于按键的处理还是有一些概念.但是单片机程序的编写通常都采用C写,也有用汇编,而FPGA却是采用VHDL或者Ver ...

  3. 基于FPGA的HDMI显示设计(三)

    上一篇:基于FPGA的VGA显示设计(二) 10月10日 ~ 20日期间实习,令我万万没想到的是实习题目是 “便携式高清电视显示屏测试系统原型设计” 也就是 “基于FPGA的视频显示”. 实习要求用 ...

  4. 优化基于FPGA的深度卷积神经网络的加速器设计

    英文论文链接:http://cadlab.cs.ucla.edu/~cong/slides/fpga2015_chen.pdf 翻译:卜居 转载请注明出处:http://blog.csdn.net/k ...

  5. 基于FPGA的DDS设计(一)

    最近在学习基于FPGA的DDS设计,借此机会把学习过程记录下来,当作自己的学习笔记也希望能够帮助到学习DDS的小伙伴. DDS(Direct Digital Synthesizer)直接数字合成器,这 ...

  6. 基于FPGA的XPT2046触摸控制器设计

    基于FPGA的XPT2046触摸控制器设计 小梅哥编写,未经许可,文章内容和所涉及代码不得用于其他商业销售的板卡 本实例所涉及代码均可通过向 xiaomeige_fpga@foxmail.com  发 ...

  7. 基于FPGA的VGA显示设计(二)

    上一篇:基于FPGA的VGA显示设计(一)     参照 CrazyBingo 的 基于FPGA的VGA可移植模块终极设计代码  的工程代码风格,模块化处理了上一篇的代码,并增加了一点其它图形. 顶层 ...

  8. 基于FPGA的VGA可移植模块终极设计【转】

    本文转载自:http://www.cnblogs.com/lueguo/p/3373643.html 略过天涯   基于FPGA的VGA可移植模块终极设计 一.VGA的诱惑 首先,VGA的驱动,这事, ...

  9. 基于FPGA的SPI FLASH控制器设计

    1.SPI FLASH的基本特征 本文实现用FPGA来设计SPI FLASH,FLASH型号为W25Q128BV.支持3种通信方式,SPI.Dual SPI和Quad SPI.FLASH的存储单元无法 ...

  10. 012 基于FPGA的网口通信实例设计【转载】

    一.网口通信设计分类 通过上面其他章节的介绍,网口千兆通信,可以使用TCP或者UDP协议,可以外挂PHY片或者不挂PHY片,总结下来就有下面几种方式完成通信: 图8‑17基于FPGA的网口通信实例设计 ...

随机推荐

  1. Java四种引用 强引用,软引用,弱引用,虚引用(转)

    强引用 : 只要引用存在,垃圾回收器永远不会回收 Object obj= new Object(); Object 对象对后面 new Object的一个强引用, 只有当obj这个被释放之后,对象才会 ...

  2. 掌握这些技巧,让Excel批量数据清洗变得简单高效!

    什么是数据清洗 数据清洗是指在数据处理过程中对原始数据进行筛选.转换和修正,以确保数据的准确性.一致性和完整性的过程.它是数据预处理的一部分,旨在处理和纠正可能存在的错误.缺失值.异常值和不一致性等数 ...

  3. 其它——ASCII码,Unicode和UTF-8编码

    文章目录 一 ASCII码 二 非ASCII编码 三 Unicode 3.1 Unicode存在的问题 3.2 它们造成的结果是 四 UTF-8 4.1 UTF-8 特点 4.2 UTF-8 的编码规 ...

  4. Python基础——字符编码、文件处理

    文章目录 字符编码 一 引入 二 知识储备 2.1 三大核心硬件 2.2 文本编辑器读取文件内容的流程 2.3 python解释器执行文件的流程 2.4 总结 三.字符编码介绍 3.1 什么是字符编码 ...

  5. PostgreSQL学习笔记-3.基础知识:CROSS、INNER、LEFT OUTER、RIGHT OUTER、FULL OUTER、UNION

    PostgreSQL JOIN 子句用于把来自两个或多个表的行结合起来,基于这些表之间的共同字段. 在 PostgreSQL 中,JOIN 有五种连接类型: CROSS JOIN :交叉连接INNER ...

  6. 深入了解 GPU 互联技术——NVLINK

    随着人工智能和图形处理需求的不断增长,多 GPU 并行计算已成为一种趋势.对于多 GPU 系统而言,一个关键的挑战是如何实现 GPU 之间的高速数据传输和协同工作.然而,传统的 PCIe 总线由于带宽 ...

  7. WPF 中引入依赖注入(.NET 通用主机)

    WPF 中引入依赖注入(.NET 通用主机) 在网上看到的文章都是通过 App.cs 中修改配置进行的,这样侵入性很高而且服务主机是通过 App 启动时加载的而不是服务主机加载的 App 有一点违反原 ...

  8. FFMPEG+SDL简单视频播放器——视频快进

    之前写过一篇关于视频播放器的文章.播放器只简单实现了视频播放的功能,在此功能的基础上,给它加上一个视频快进的功能. 实现 添加参数 // video play control bool do_seek ...

  9. Fiddler安装,使用及汉化教程

    Fiddler安装及汉化教程 一.下载安装 1.下载 官网链接:https://www.telerik.com/download/fiddler 左侧填写用途,邮箱及城市,然后下载就可以 左侧下载即D ...

  10. docker容器管理脚本

    #!/bin/bash #auto install docker and Create VM #by jfedu.net 2017 #Define PATH Varablies IPADDR=`ifc ...