CF527E Data Center Drama 题解
题目
CF527E Data Center Drama · 戳这里
题意
- 给定一张 $n$ 个点 $m$ 条边的连通无向图。
- 你需要加尽可能少的边,然后给所有边定向,使得每一个点的出入度都是偶数。
- 边可以是自环,也可以有重边。
- $n \le 10^5$,$m \le 2 \times 10^5$。
(本题是 SPJ,所以顺序不用管)
题解
思路
所有顶点度数都为偶数,且该图是连通图,是无向图存在欧拉回路的充要条件。
所以我们需要将所有顶点度数为奇数的点两两相连,但是并不是所有存在欧拉回路的图都满足条件,还需要满足边数为偶数。
所以如果最后边数是奇数,随便找个点连个自环即可(这里就把 1 号节点连一个自环了)。
这显然是最少的加边方案,最后跑一个欧拉回路出来,然后隔一条边换一个方向即可。
详解
首先,存图我们用链式前向星存,然后在记录每个点的入度。
这里我们第一条边从 $2$ 开始记,因为这样我们按顺序记录正着的边和反着的边,反着的边的编号就等于正着的边的编号异或 $1$。
int edge_tot = 1;
int in_cnt[N];
int head[N];
struct Edge {
int to;
int nxt;
};
Edge edge[N];
void add(int u, int v) {
++edge_tot;
edge[edge_tot].to = v;
edge[edge_tot].nxt = head[u];
head[u] = edge_tot;
++in_cnt[v];
}
接下来是主函数的输入部分。
int n, m;
int u, v;
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i)
head[i] = -1;
for(int i = 1; i <= m; ++i) {
scanf("%d%d", &u, &v);
add(u, v);
add(v, u);
}
然后记录一下入度为奇数的点。
我们用一个 $vector$ 来存。
vector <int> ill;
然后将所有入度为奇数的点都压进去。
for(int i = 1; i <= n; ++i)
if(in_cnt[i] & 1)
ill.push_back(i);
再把它们两两相连。
for(int i = 0; i < ill.size(); i += 2) {
add(ill[i], ill[i + 1]);
add(ill[i + 1], ill[i]);
++m;
}
然后判断如果这时候边数 $m$ 是奇数,就给 $1$ 号节点加个自环。
if(m & 1) {
add(1, 1);
++m;
}
先输出一个边数 $m$。
printf("%d\n", m);
然后就是输出边了,这里跑个欧拉回路就行了。
bool vis[N];
int print_tot;
void dfs(int u) {
for(int &i = head[u]; i != -1; ) {
int v = edge[i].to;
if(vis[i]) {
i = edge[i].nxt;
continue;
}
vis[i] = vis[i ^ 1] = true;
i = edge[i].nxt;
dfs(v);
++print_tot;
if(print_tot & 1)
printf("%d %d\n", u, v);
else
printf("%d %d\n", v, u);
}
}
注意事项
for(int &i = head[u]; i != -1; )里的&i。i = edge[i].nxt;要写两遍,不能提到前面,否则后面的i就都变了。
代码
#include <cstdio>
#include <vector>
using namespace std;
const int N = 1e6 + 5;
int n, m;
int u, v;
int edge_tot = 1;
int in_cnt[N];
vector <int> ill;
bool vis[N];
int print_tot;
int head[N];
struct Edge {
int to;
int nxt;
};
Edge edge[N];
void add(int u, int v) {
++edge_tot;
edge[edge_tot].to = v;
edge[edge_tot].nxt = head[u];
head[u] = edge_tot;
++in_cnt[v];
}
void dfs(int u) {
for(int &i = head[u]; i != -1; ) {
int v = edge[i].to;
if(vis[i]) {
i = edge[i].nxt;
continue;
}
vis[i] = vis[i ^ 1] = true;
i = edge[i].nxt;
dfs(v);
++print_tot;
if(print_tot & 1)
printf("%d %d\n", u, v);
else
printf("%d %d\n", v, u);
}
}
int main() {
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++i)
head[i] = -1;
for(int i = 1; i <= m; ++i) {
scanf("%d%d", &u, &v);
add(u, v);
add(v, u);
}
for(int i = 1; i <= n; ++i)
if(in_cnt[i] & 1)
ill.push_back(i);
for(int i = 0; i < ill.size(); i += 2) {
add(ill[i], ill[i + 1]);
add(ill[i + 1], ill[i]);
++m;
}
if(m & 1) {
add(1, 1);
++m;
}
printf("%d\n", m);
dfs(1);
return 0;
}
AC 记录
尾声
如果这篇博客对您(您的团队)有帮助的话,就帮忙点个赞,加个关注!
最后,祝您(您的团队)在 OI 的路上一路顺风!!!
┬┴┬┴┤・ω・)ノ ByeBye
CF527E Data Center Drama 题解的更多相关文章
- CF527E Data Center Drama
链接CF527E Data Center Drama 题目大意:给你一个无向图,要求加最少的边,然后给这些无向图的边定向,使得每一个点的出入度都是偶数. \(n<=10^5,n\leq 2*10 ...
- CF527E Data Center Drama(构造+欧拉回路)
题目链接 大意: 给你一个无向图. 要求加最少的边,然后给这些无向图的边定向,使得每一个点的出入度都是偶数. 输出定向后的边数和边集. n<=10^5 m<=2*10^5 很巧妙的构造题- ...
- 「CF527E」 Data Center Drama
「CF527E」 Data Center Drama 传送门 显然一个环肯定满足题目条件. 然后我就开始想:先整一棵 \(\texttt{DFS}\) 树,然后非树边从深度深的节点向深度浅的节点连边, ...
- Codeforces Round #296 (Div. 1) C. Data Center Drama 欧拉回路
Codeforces Round #296 (Div. 1)C. Data Center Drama Time Limit: 2 Sec Memory Limit: 256 MBSubmit: xx ...
- Codeforces 527E Data Center Drama(欧拉回路)
题意: 给定一个无向图连通图,把这个的无向边变成有向边,并添加最少的有向边使这个图每个结点的出度为偶数. Solution: 题目很长,并且很多条件说的不太直接,确实不太好懂. 首先先看得到的无向图, ...
- Data Center Drama 欧拉回路的应用
这题说的是给了n个点 和m条边, 这m条边是无向的,任务是将这些边变成有向的,并且添加最少的有向边使得这个图中每个点的入度为偶数, 出度为偶数. 我们可以考虑使用欧拉回路来解决这个问题,这样说,假如一 ...
- Codeforces Gym 100513D D. Data Center 前缀和 排序
D. Data Center Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/560/proble ...
- Data Center手册(4):设计
基础架构 拓扑图 Switching Path L3 routing at aggregation layer L2 switching at access layer L3 switch融合了三种功 ...
- Data Center手册(2): 安全性
有个安全性有下面几种概念: Threat:威胁 Vulnerability: 安全隐患 Attack: 攻击 有关Threat 常见的威胁有下面几种 DoS(Denial of Service拒绝服务 ...
- Data Center手册(1):架构
如图是数据中心的一个基本架构 最上层是Internet Edge,也叫Edge Router,也叫Border Router,它提供数据中心与Internet的连接. 连接多个网络供应商来提供冗余可靠 ...
随机推荐
- Linux系统奇安信浏览器报错跨域:the resource is in more-private address space 'local'
报错: Access to XMLHttpRequest at "123" from origin "456" has been blocked by CORS ...
- cv.calibrateCamera
相机造成的失真类型 如何找到相机的内在和外在特性 如何基于这些特性来消除图像失真 基础 一些针孔相机会对图像造成严重失真.两种主要的畸变是径向畸变和切向畸变. 径向变形会使直线看起来是弯曲的.点离图像 ...
- Mysql之SQL语句初级用法
前言 本文通过简单的示例去了解Mysql的DDL.DML.DCL的语句用法. 一.DDL语句 DDL(Data Definition Language)语句: 数据定义语言,主要是进行定义/改变表的结 ...
- 如何使用 Grafana 监控文件系统状态
当 JuiceFS 文件系统部署完成并投入生产环境,接下来就需要着手解决一个非常重要的问题 -- 如何实时监控它的运行状态?毕竟,它可能正在为关键的业务应用或容器工作负载提供持久化存储支持,任何小小的 ...
- centos8 \CentOS 9 Stream rpm 安装mysql8.0.28
centos8 rpm 安装mysql8.0.28 检查 检测系统是否自带安装 MySQL 命令如下: rpm -qa | grep mysql 如果如下存在已安装的包,就需要卸载 mysql80-c ...
- redis 简单整理——java 客户端jedis[十六]
前言 简单介绍一下java客户端jedis. 正文 Java有很多优秀的Redis客户端(详见:http://redis.io/clients#java),这 里介绍使用较为广泛的客户端Jedis,本 ...
- Hadoop HDFS 3.2的部署
之前写过HDFS 2.6的部署,最近项目中尝试使用最新的HDFS 3.2.1做离线存储,部署方式略有不同,所以这里再简单写一下,这里只涉及到存储因此不再配置yarn,只配置HDFS最基本的服务Name ...
- js 连接数据库 提示:ActiveXObject is not defined
ActiveXObject is not defined 最近比较闲,上班瞎捣鼓一下,没想到报错了,提示ActiveXObject is not defined 大概是在js连接数据库时new对象使用 ...
- 02_Vue模板语法
Vue模板语法有2大类: 1.插值语法: 功能:用于解析标签体内容. 写法:{{xxx}},xxx是js的表达式,且可以直接读取到data中的所 ...
- Flink 1.12 资源管理新特性回顾
简介: 介绍 Flink 1.12 资源管理的一些特性,包括内存管理.资源调度.扩展资源框架. 本文由社区志愿者陈政羽整理,Apache Flink Committer.阿里巴巴技术专家宋辛童,Apa ...