题目

CF527E Data Center Drama · 戳这里

题意

  • 给定一张 $n$ 个点 $m$ 条边的连通无向图。
  • 你需要加尽可能少的边,然后给所有边定向,使得每一个点的出入度都是偶数。
  • 边可以是自环,也可以有重边。
  • $n \le 10^5$,$m \le 2 \times 10^5$。

(本题是 SPJ,所以顺序不用管)

题解

思路

所有顶点度数都为偶数,且该图是连通图,是无向图存在欧拉回路的充要条件。

所以我们需要将所有顶点度数为奇数的点两两相连,但是并不是所有存在欧拉回路的图都满足条件,还需要满足边数为偶数。

所以如果最后边数是奇数,随便找个点连个自环即可(这里就把 1 号节点连一个自环了)。

这显然是最少的加边方案,最后跑一个欧拉回路出来,然后隔一条边换一个方向即可。

详解

首先,存图我们用链式前向星存,然后在记录每个点的入度。

这里我们第一条边从 $2$ 开始记,因为这样我们按顺序记录正着的边和反着的边,反着的边的编号就等于正着的边的编号异或 $1$。

int edge_tot = 1;
int in_cnt[N];
int head[N]; struct Edge {
int to;
int nxt;
}; Edge edge[N]; void add(int u, int v) {
++edge_tot;
edge[edge_tot].to = v;
edge[edge_tot].nxt = head[u];
head[u] = edge_tot;
++in_cnt[v];
}

接下来是主函数的输入部分。

int n, m;
int u, v;
scanf("%d%d", &n, &m);

for(int i = 1; i <= n; ++i)
head[i] = -1; for(int i = 1; i <= m; ++i) {
scanf("%d%d", &u, &v);
add(u, v);
add(v, u);
}

然后记录一下入度为奇数的点。

我们用一个 $vector$ 来存。

vector <int> ill;

然后将所有入度为奇数的点都压进去。

for(int i = 1; i <= n; ++i)
if(in_cnt[i] & 1)
ill.push_back(i);

再把它们两两相连。

for(int i = 0; i < ill.size(); i += 2) {
add(ill[i], ill[i + 1]);
add(ill[i + 1], ill[i]);
++m;
}

然后判断如果这时候边数 $m$ 是奇数,就给 $1$ 号节点加个自环。

if(m & 1) {
add(1, 1);
++m;
}

先输出一个边数 $m$。

printf("%d\n", m);

然后就是输出边了,这里跑个欧拉回路就行了。

bool vis[N];
int print_tot; void dfs(int u) {
for(int &i = head[u]; i != -1; ) {
int v = edge[i].to; if(vis[i]) {
i = edge[i].nxt;
continue;
} vis[i] = vis[i ^ 1] = true; i = edge[i].nxt; dfs(v); ++print_tot; if(print_tot & 1)
printf("%d %d\n", u, v);
else
printf("%d %d\n", v, u);
}
}

注意事项

  • for(int &i = head[u]; i != -1; ) 里的 &i

  • i = edge[i].nxt; 要写两遍,不能提到前面,否则后面的 i 就都变了。

代码

#include <cstdio>
#include <vector>
using namespace std; const int N = 1e6 + 5; int n, m;
int u, v;
int edge_tot = 1;
int in_cnt[N];
vector <int> ill;
bool vis[N];
int print_tot;
int head[N]; struct Edge {
int to;
int nxt;
}; Edge edge[N]; void add(int u, int v) {
++edge_tot;
edge[edge_tot].to = v;
edge[edge_tot].nxt = head[u];
head[u] = edge_tot;
++in_cnt[v];
} void dfs(int u) {
for(int &i = head[u]; i != -1; ) {
int v = edge[i].to; if(vis[i]) {
i = edge[i].nxt;
continue;
} vis[i] = vis[i ^ 1] = true; i = edge[i].nxt; dfs(v); ++print_tot; if(print_tot & 1)
printf("%d %d\n", u, v);
else
printf("%d %d\n", v, u);
}
} int main() {
scanf("%d%d", &n, &m); for(int i = 1; i <= n; ++i)
head[i] = -1; for(int i = 1; i <= m; ++i) {
scanf("%d%d", &u, &v);
add(u, v);
add(v, u);
} for(int i = 1; i <= n; ++i)
if(in_cnt[i] & 1)
ill.push_back(i); for(int i = 0; i < ill.size(); i += 2) {
add(ill[i], ill[i + 1]);
add(ill[i + 1], ill[i]);
++m;
} if(m & 1) {
add(1, 1);
++m;
} printf("%d\n", m); dfs(1); return 0;
}

AC 记录

提交记录 · 戳这里

尾声

如果这篇博客对您(您的团队)有帮助的话,就帮忙点个赞,加个关注!

最后,祝您(您的团队)在 OI 的路上一路顺风!!!

┬┴┬┴┤・ω・)ノ ByeBye

CF527E Data Center Drama 题解的更多相关文章

  1. CF527E Data Center Drama

    链接CF527E Data Center Drama 题目大意:给你一个无向图,要求加最少的边,然后给这些无向图的边定向,使得每一个点的出入度都是偶数. \(n<=10^5,n\leq 2*10 ...

  2. CF527E Data Center Drama(构造+欧拉回路)

    题目链接 大意: 给你一个无向图. 要求加最少的边,然后给这些无向图的边定向,使得每一个点的出入度都是偶数. 输出定向后的边数和边集. n<=10^5 m<=2*10^5 很巧妙的构造题- ...

  3. 「CF527E」 Data Center Drama

    「CF527E」 Data Center Drama 传送门 显然一个环肯定满足题目条件. 然后我就开始想:先整一棵 \(\texttt{DFS}\) 树,然后非树边从深度深的节点向深度浅的节点连边, ...

  4. Codeforces Round #296 (Div. 1) C. Data Center Drama 欧拉回路

    Codeforces Round #296 (Div. 1)C. Data Center Drama Time Limit: 2 Sec  Memory Limit: 256 MBSubmit: xx ...

  5. Codeforces 527E Data Center Drama(欧拉回路)

    题意: 给定一个无向图连通图,把这个的无向边变成有向边,并添加最少的有向边使这个图每个结点的出度为偶数. Solution: 题目很长,并且很多条件说的不太直接,确实不太好懂. 首先先看得到的无向图, ...

  6. Data Center Drama 欧拉回路的应用

    这题说的是给了n个点 和m条边, 这m条边是无向的,任务是将这些边变成有向的,并且添加最少的有向边使得这个图中每个点的入度为偶数, 出度为偶数. 我们可以考虑使用欧拉回路来解决这个问题,这样说,假如一 ...

  7. Codeforces Gym 100513D D. Data Center 前缀和 排序

    D. Data Center Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/560/proble ...

  8. Data Center手册(4):设计

    基础架构 拓扑图 Switching Path L3 routing at aggregation layer L2 switching at access layer L3 switch融合了三种功 ...

  9. Data Center手册(2): 安全性

    有个安全性有下面几种概念: Threat:威胁 Vulnerability: 安全隐患 Attack: 攻击 有关Threat 常见的威胁有下面几种 DoS(Denial of Service拒绝服务 ...

  10. Data Center手册(1):架构

    如图是数据中心的一个基本架构 最上层是Internet Edge,也叫Edge Router,也叫Border Router,它提供数据中心与Internet的连接. 连接多个网络供应商来提供冗余可靠 ...

随机推荐

  1. C++调用Python-0:搭建环境

    1.进入到Python安装目录 2.将Python安装目录中的 include 和 libs 文件夹放在 C++项目中 3.设置 附加包含目录 和 附加库目录.附加依赖项(python310_d.li ...

  2. Qt数据结构-QString二:QString的arg能不能像Python的format一样使用

    常规QString拼接字符串我们是这样写的 QString s = QString("My name is %1, age %2").arg("zhangsan" ...

  3. echarts X轴类目名太长时隐藏,hover时显示全部

    echarts图表X轴 在柱状图中,X轴类目名如果数据太长: echarts会默认进行隐藏部分字段: 如果我们想让每一个类目名都显示出来,需要进行额外的处理 X轴类目名太长时,默认只显示一部分类目名 ...

  4. 开发指导—利用CSS动画实现HarmonyOS动效(二)

      注:本文内容分享转载自HarmonyOS Developer官网文档 点击查看<开发指导-利用CSS动画实现HarmonyOS动效(一)> 3. background-position ...

  5. "鸿蒙生态专家面对面"三月专场等你前来!

  6. Android 开发入门(5)

    0x07 数据存储 (1)共享参数 SharedPreferences a. 用法 用法 SharedPreferences 是 Android 的一个轻量级存储工具,采用的存储结构为键值对的方式 共 ...

  7. 批处理 if的知识点

    正文 批处理的if不同于我们在一些常规语言中的if,比如说c或者c# 或者 java等. 如果我们判断两个字符是否相等,我们使用 'a'=='a' 来判断. 但是如果是不相等却不能这样. gtr 大于 ...

  8. 集群部署时的分布式 session 如何实现?

    面试官心理分析 面试官问了你一堆 dubbo 是怎么玩儿的,你会玩儿 dubbo 就可以把单块系统弄成分布式系统,然后分布式之后接踵而来的就是一堆问题,最大的问题就是分布式事务.接口幂等性.分布式锁, ...

  9. (react)获取json数据与传入(antd配合)

    import React from 'react'; import {fetch} from 'whatwg-fetch'; // import {HashRouter as Router,Route ...

  10. OpenSergo 流量路由:从场景到标准化的探索

    简介: 本文我们将从流量路由这个场景入手,从常见的微服务治理场景出发.先是根据流量路由的实践设计流量路由的 Spec,同时在 Spring Cloud Alibaba 中实践遵循 OpenSergo ...