没有除法的版本

弱化版Blog

题目


分析

只针对除法而言,如果商很大直接用bitset判断是否存在,

否则直接预处理最近的答案判断是否在区间内即可,注意0要特判


代码

#include <cstdio>
#include <cctype>
#include <bitset>
#include <algorithm>
#define rr register
using namespace std;
const int N=100011,base=316; bitset<N>uk,ku;
struct five{int opt,l,r,x,rk,Is;}q[N];
int kuai[N],Sqrt[N],a[N],ans[N],m,n,Q,CNT[N],last[N],mx[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
bool cmp(five a,five b){
if (a.Is&&b.Is) return a.x>b.x;
if (a.Is||b.Is) return b.Is;
if (kuai[a.l]^kuai[b.l]) return a.l<b.l;
if (kuai[a.r]^kuai[b.r]) return kuai[a.l]&1?a.r<b.r:a.r>b.r;
return (kuai[a.l]^kuai[a.r])&1?a.x<b.x:a.x>b.x;
}
inline signed max(int a,int b){return a>b?a:b;}
inline void add(int now){if (++CNT[now]==1) uk[now]=ku[N-now-1]=1;}
inline void del(int now){if (--CNT[now]==0) uk[now]=ku[N-now-1]=0;}
signed main(){
n=iut(); Q=iut();
for (rr int i=1;i<=base;++i) Sqrt[i*i]=i;
for (rr int i=1;i<N;++i) if (!Sqrt[i]) Sqrt[i]=Sqrt[i-1];
for (rr int i=1;i<=n;++i) a[i]=iut(),kuai[i]=(i-1)/base+1;
for (rr int i=1;i<=Q;++i) q[i]=(five){iut(),iut(),iut(),iut(),i,0},q[i].Is=q[i].opt==4&&q[i].x<=base;
sort(q+1,q+1+Q,cmp),m=Q; for (;m&&q[m].Is;--m);
for (rr int l=m+1,r;l<=Q;l=r+1){
for (r=l;r<=Q&&q[r].x==q[l].x;++r); --r;
if (!q[l].x){
for (rr int i=1,now=0;i<=n;++i){
if (!a[i]) now=i;
mx[i]=now;
}
for (rr int i=l;i<=r;++i){
if (q[i].l==q[i].r) continue;
if (q[i].l<=mx[q[i].r])
ans[q[i].rk]=1;
}
continue;
}
for (rr int i=0;i<N;++i) last[i]=0;
for (rr int i=1,now=0;i<=n;++i){
last[a[i]]=i;
if (a[i]*q[l].x<N) now=max(now,last[a[i]*q[l].x]);
if (a[i]%q[l].x==0) now=max(now,last[a[i]/q[l].x]);
mx[i]=now;
}
for (rr int i=l;i<=r;++i)
if (q[i].l<=mx[q[i].r])
ans[q[i].rk]=1;
}
for (rr int i=1,L=q[1].l,R=L-1;i<=m;++i){
while (L>q[i].l) add(a[--L]);
while (L<q[i].l) del(a[L++]);
while (R>q[i].r) del(a[R--]);
while (R<q[i].r) add(a[++R]);
switch (q[i].opt){
case 1:ans[q[i].rk]=(uk&(uk<<q[i].x)).any(); break;
case 2:ans[q[i].rk]=(uk&(ku>>(N-q[i].x-1))).any(); break;
case 3:{
if (!q[i].x&&uk[q[i].x]) {ans[q[i].rk]=1; break;}
for (rr int j=1;j<=Sqrt[q[i].x];++j)
if (q[i].x%j==0&&uk[j]&&uk[q[i].x/j]){
ans[q[i].rk]=1; break;
}
break;
}
case 4:{
rr int t=(N-1)/q[i].x;
for (rr int j=1;j<=t;++j)
if (uk[j]&&uk[j*q[i].x]){
ans[q[i].rk]=1; break;
}
break;
}
}
}
for (rr int i=1;i<=Q;++i)
if (ans[i]) printf("yuno\n");
else printf("yumi\n");
return 0;
}

#bitset优化,莫队#洛谷 5355 [Ynoi2017] 由乃的玉米田的更多相关文章

  1. 洛谷P4135 Ynoi2016 掉进兔子洞 (带权bitset?/bitset优化莫队 模板) 题解

    题面. 看到这道题,我第一反应就是莫队. 我甚至也猜出了把所有询问的三个区间压到一起处理然后分别计算对应询问答案. 但是,这么复杂的贡献用什么东西存?难道要开一个数组 query_appear_tim ...

  2. 莫队 [洛谷2709] 小B的询问[洛谷1903]【模板】分块/带修改莫队(数颜色)

    莫队--------一个优雅的暴力 莫队是一个可以在O(n√n)内求出绝大部分无修改的离线的区间问题的答案(只要问题满足转移是O(1)的)即你已知区间[l,r]的解,能在O(1)的时间内求出[l-1, ...

  3. 普通莫队--洛谷P1997 【faebdc的烦恼】

    离散化+莫队 cnt数组表示某个颜色出现的次数 sum数组表示某个数量出现的颜色种类 其它细节问题就按照莫队的模板来的 #include<cstdio> #include<algor ...

  4. 洛谷 P3287 - [SCOI2014]方伯伯的玉米田(BIT 优化 DP)

    洛谷题面传送门 怎么题解区全是 2log 的做法/jk,这里提供一种 1log 并且代码更短(bushi)的做法. 首先考虑对于一个序列 \(a\) 怎样计算将其变成单调不降的最小代价.对于这类涉及区 ...

  5. Machine Learning Codeforces - 940F(带修莫队) && 洛谷P4074 [WC2013]糖果公园

    以下内容未验证,有错请指正... 设块大小为T,则块数为$\frac{n}{T}$ 将询问分为$(\frac{n}{T})^2$块(按照左端点所在块和右端点所在块分块),同块内按时间从小到大依次处理 ...

  6. 洛谷P3287 [SCOI2014]方伯伯的玉米田(树状数组)

    传送门 首先要发现,每一次选择拔高的区间都必须包含最右边的端点 为什么呢?因为如果拔高了一段区间,那么这段区间对于它的左边是更优的,对它的右边会更劣,所以我们每一次选的区间都得包含最右边的端点 我们枚 ...

  7. bzoj4810 [Ynoi2017]由乃的玉米田 bitset优化+暴力+莫队

    [Ynoi2017]由乃的玉米田 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 917  Solved: 447[Submit][Status][Di ...

  8. 【BZOJ4810】[Ynoi2017]由乃的玉米田 bitset+莫队

    [BZOJ4810][Ynoi2017]由乃的玉米田 Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐.由乃认为玉米田不美,所 ...

  9. LuoguP3674 小清新人渣的本愿 && BZOJ4810: [Ynoi2017]由乃的玉米田

    题目地址 小清新人渣的本愿 [Ynoi2017]由乃的玉米田 所以这两题也就输出不一样而已 题解 这种lxl的题还是没修改操作的题基本就是莫队 分开考虑每个询问 1.减法 \(a-b=x⇒a=b+x\ ...

  10. 【洛谷 P3674】 小清新人渣的本愿(bitset,莫队)

    题目链接 因为每个数都是\(10^5\)以内,考虑直接用\(bitset\)维护. \(a-b=x\),其实就是看是否有\(p\)和\(p+x\)同时存在,直接\(bitset\)移位按位与一下就好了 ...

随机推荐

  1. RAID 10磁盘阵列实践

    RAID概述 RAID技术通过把多个硬盘设备组合成一个容量更大.安全性更好的磁盘阵列,利用分散读写技术来提升磁盘阵列整体的性能,同时把多个重要数据的副本同步到不同的物理硬盘设备上,从而起到了非常好的数 ...

  2. 解决Linux平台Selenium截图中文乱码问题

    通常情况下,像CentOS这样的Linux发行版默认是缺少中文字体的,所以在执行Selenium截图时,如果目标网页中有中文,则截图后中文将会显示为方块一样的乱码. 解决办法:手动安装中文字体即可. ...

  3. 【LeetCode二叉树#09】路径总和I+II,以及求根节点到叶节点数字之和(回溯回溯,还是™的回溯)

    路径总和 力扣题目链接(opens new window) 给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和. 说明: 叶子节点是指没有子节点的 ...

  4. 【Azure Redis】中国区Redis在东三区的资源无法在通过门户上与北三区资源之间建立灾备链接

    问题描述 为应用启用灾备管理,在北三区建立了一个Azure Redis,同时,在东三区也建立了一个同样的Prem级Redis服务.但是在建立灾备(DR:Disease Recovery)时候,却无法选 ...

  5. gopkg.in/go-playground/validator中比较有用的标签

    -  忽略|  或omitempty 有则验证,空值则不验证dive  潜入到切片.数组.映射中,例如 NumList []int `validate:"len=2,dive,gt=18&q ...

  6. ArrayList继承了AbstractList为何还要实现List接口

    ArrayList继承了AbstractList为何还要实现List接口? 相关的问题: Vector既然继承了AbstractList为啥还要实现List接口 HashMap继承了AbstractM ...

  7. Java 类的结构之三 :构造器(或构造方法,constructor)的使用

    1 /* 2 * 类的结构之三 :构造器(或构造方法,constructor)的使用 3 * construct:建设 建造 4 * 5 * 一.构造器的作用: 6 * 创建对象 7 * 初始化对象的 ...

  8. Java //9*9乘法表 乘法口诀

    1 //9*9乘法表 2 3 for(int i =1;i<10;i++) 4 { 5 for(int j = 1;j <=i;j++) 6 { 7 System.out.print(i+ ...

  9. Python中那些简单又好用的特性和用法

    Python作为我的主力语言帮助我开发了许多DevOps运维自动化系统,这篇文章总结几个我在编写Python代码过程中用到的几个简单又好用的特性和用法,这些特性和用法可以帮助我们更高效地编写Pytho ...

  10. electron暴露配置文件(用户可随时修改)

    配置文件 一般web前端项目配置文件,写死的放在src/config下,需要打包配置的放在.env文件中.但在electron项目中,如果配置数据更改,需要每次给用户打包升级肯定是行不通的.于是外部配 ...