Llama 2 来袭 - 在 Hugging Face 上玩转它
引言
今天,Meta 发布了 Llama 2,其包含了一系列最先进的开放大语言模型,我们很高兴能够将其全面集成入 Hugging Face,并全力支持其发布。 Llama 2 的社区许可证相当宽松,且可商用。其代码、预训练模型和微调模型均于今天发布了。
通过与 Meta 合作,我们已经顺利地完成了对 Llama 2 的集成,你可以在 Hub 上找到 12 个开放模型 (3 个基础模型以及 3 个微调模型,每个模型都有 2 种 checkpoint: 一个是 Meta 的原始 checkpoint,一个是 transformers 格式的 checkpoint)。以下列出了 Hugging Face 支持 Llama 2 的主要工作:
- Llama 2 已入驻 Hub: 包括模型卡及相应的许可证。
- 支持 Llama 2 的 transformers 库
- 使用单 GPU 微调 Llama 2 小模型的示例
- Text Generation Inference (TGI) 已集成 Llama 2,以实现快速高效的生产化推理
- 推理终端 (Inference Endpoints) 已集成 Llama 2
目录
何以 Llama 2?
Llama 2 引入了一系列预训练和微调 LLM,参数量范围从 7B 到 70B (7B、13B、70B)。其预训练模型比 Llama 1 模型有了显著改进,包括训练数据的总词元数增加了 40%、上下文长度更长 (4k 词元),以及利用了分组查询注意力机制来加速 70B 模型的推理!
但最令人兴奋的还是其发布的微调模型 (Llama 2-Chat),该模型已使用 基于人类反馈的强化学习 (Reinforcement Learning from Human Feedback,RLHF) 技术针对对话场景进行了优化。在相当广泛的有用性和安全性测试基准中,Llama 2-Chat 模型的表现优于大多数开放模型,且其在人类评估中表现出与 ChatGPT 相当的性能。更多详情,可参阅其 论文。

图来自 Llama 2: Open Foundation and Fine-Tuned Chat Models 一文
如果你一直在等一个闭源聊天机器人的开源替代,那你算是等着了!Llama 2-Chat 将是你的最佳选择!
| 模型 | 许可证 | 可否商用? | 预训练词元数 | 排行榜得分 |
|---|---|---|---|---|
| Falcon-7B | Apache 2.0 | 1,500B | 47.01 | |
| MPT-7B | Apache 2.0 | 1,000B | 48.7 | |
| Llama-7B | Llama 许可证 | 1,000B | 49.71 | |
| Llama-2-7B | Llama 2 许可证 | 2,000B | 54.32 | |
| Llama-33B | Llama 许可证 | 1,500B | * | |
| Llama-2-13B | Llama 2 许可证 | 2,000B | 58.67 | |
| mpt-30B | Apache 2.0 | 1,000B | 55.7 | |
| Falcon-40B | Apache 2.0 | 1,000B | 61.5 | |
| Llama-65B | Llama 许可证 | 1,500B | 62.1 | |
| Llama-2-70B | Llama 2 许可证 | 2,000B | * | |
| Llama-2-70B-chat* | Llama 2 许可证 | 2,000B | 66.8 |
*目前,我们正在对 Llama 2 70B (非聊天版) 进行评测。评测结果后续将更新至此表。
演示
你可以通过 这个空间 或下面的应用轻松试用 Llama 2 大模型 (700 亿参数!):

它们背后都是基于 Hugging Face 的 TGI 框架,该框架也支撑了 HuggingChat,我们会在下文分享更多相关内容。
推理
本节,我们主要介绍可用于对 Llama 2 模型进行推理的两种不同方法。在使用这些模型之前,请确保你已在 Meta Llama 2 存储库页面申请了模型访问权限。
**注意: 请务必按照页面上的指示填写 Meta 官方表格。填完两个表格数小时后,用户就可以访问模型存储库。
使用 transformers
从 transformers 4.31 版本开始,HF 生态中的所有工具和机制都可以适用于 Llama 2,如:
- 训练、推理脚本及其示例
- 安全文件格式 (
safetensors) - 与 bitsandbytes (4 比特量化) 和 PEFT 等工具
- 帮助模型进行文本生成的辅助工具
- 导出模型以进行部署的机制
你只需确保使用最新的 transformers 版本并登录你的 Hugging Face 帐户。
pip install transformers
huggingface-cli login
下面是如何使用 transformers 进行推理的代码片段:
from transformers import AutoTokenizer
import transformers
import torch
model = "meta-llama/Llama-2-7b-chat-hf"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
sequences = pipeline(
'I liked "Breaking Bad" and "Band of Brothers". Do you have any recommendations of other shows I might like?\n',
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=200,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
Result: I liked "Breaking Bad" and "Band of Brothers". Do you have any recommendations of other shows I might like?
Answer:
Of course! If you enjoyed "Breaking Bad" and "Band of Brothers," here are some other TV shows you might enjoy:
1. "The Sopranos" - This HBO series is a crime drama that explores the life of a New Jersey mob boss, Tony Soprano, as he navigates the criminal underworld and deals with personal and family issues.
2. "The Wire" - This HBO series is a gritty and realistic portrayal of the drug trade in Baltimore, exploring the impact of drugs on individuals, communities, and the criminal justice system.
3. "Mad Men" - Set in the 1960s, this AMC series follows the lives of advertising executives on Madison Avenue, expl
另外,尽管模型本身的上下文长度 仅 4k 词元,但你可以使用 transformers 支持的技术,如旋转位置嵌入缩放 (rotary position embedding scaling) (推特),进一步把它变长!
使用 TGI 和推理终端
Text Generation Inference (TGI) 是 Hugging Face 开发的生产级推理容器,可用于轻松部署大语言模型。它支持流式组批、流式输出、基于张量并行的多 GPU 快速推理,并支持生产级的日志记录和跟踪等功能。
你可以在自己的基础设施上部署并尝试 TGI,也可以直接使用 Hugging Face 的 推理终端。如果要用推理终端部署 Llama 2 模型,请登陆 模型页面 并单击 Deploy -> Inference Endpoints 菜单。
- 要推理 7B 模型,我们建议你选择 “GPU [medium] - 1x Nvidia A10G”。
- 要推理 13B 模型,我们建议你选择 “GPU [xlarge] - 1x Nvidia A100”。
- 要推理 70B 模型,我们建议你选择 “GPU [xxxlarge] - 8x Nvidia A100”。
注意: 如果你配额不够,请发送邮件至 api-enterprise@huggingface.co 申请升级配额,通过后你就可以访问 A100 了。
你还可以从我们的另一篇博文中了解更多有关 如何使用 Hugging Face 推理终端部署 LLM 的知识 , 文中包含了推理终端支持的超参以及如何使用其 Python 和 Javascript API 实现流式输出等信息。
用 PEFT 微调
训练 LLM 在技术和计算上都有一定的挑战。本节,我们将介绍 Hugging Face 生态中有哪些工具可以帮助开发者在简单的硬件上高效训练 Llama 2,我们还将展示如何在单张 NVIDIA T4 (16GB - Google Colab) 上微调 Llama 2 7B 模型。你可以通过 让 LLM 更可得 这篇博文了解更多信息。
我们构建了一个 脚本,其中使用了 QLoRA 和 trl 中的 SFTTrainer 来对 Llama 2 进行指令微调。
下面的命令给出了在 timdettmers/openassistant-guanaco 数据集上微调 Llama 2 7B 的一个示例。该脚本可以通过 merge_and_push 参数将 LoRA 权重合并到模型权重中,并将其保存为 safetensor 格式。这样,我们就能使用 TGI 和推理终端部署微调后的模型。
首先安装 trl 包并下载脚本:
pip install trl
git clone https://github.com/lvwerra/trl
然后,你就可以运行脚本了:
python trl/examples/scripts/sft_trainer.py \
--model_name meta-llama/Llama-2-7b-hf \
--dataset_name timdettmers/openassistant-guanaco \
--load_in_4bit \
--use_peft \
--batch_size 4 \
--gradient_accumulation_steps 2
其他资源
总结
Llama 2 的推出让我们非常兴奋!后面我们会围绕它陆陆续续推出更多内容,包括如何微调一个自己的模型,如何在设备侧运行 Llama 2 小模型等,敬请期待!
英文原文: https://huggingface.co/blog/llama2
原文作者: Philipp Schmid,Omar Sanseviero,Pedro Cuenca,Lewis Tunstall
译者: Matrix Yao (姚伟峰),英特尔深度学习工程师,工作方向为 transformer-family 模型在各模态数据上的应用及大规模模型的训练推理。
审校/排版: zhongdongy (阿东)
Llama 2 来袭 - 在 Hugging Face 上玩转它的更多相关文章
- 【用PS3手柄在安卓设备上玩游戏系列】连接手柄和设备
背景 硬件要求1:PS3 手柄 + 手柄配套的USB线 硬件要求2:已经获得 ROOT 权限并且支持蓝牙的安卓设备 软件要求1:Sixaxis Compatibility Checker PS3 手柄 ...
- 想不想在mac上玩PSP?我教你呀
OpenEmu for mac是一款针对OS X系统的原生开源游戏模拟器.有了它可以在Mac OS X 系统上玩GB.GBA.NDS.psP.PlayStation.超级任天堂(SNES).红白机(N ...
- 【用PS3手柄在安卓设备上玩游戏系列】谈安卓游戏对手柄的支持
不同的游戏对于手柄的支持程度是不一样的,对应所需要进行的手柄设置也不尽相同.我没有这样的时间和精力,针对每一款游戏去写博客,但找出不同游戏中的共同点,针对同一类的游戏去写博客,应该是可行的.我把安卓上 ...
- 在通知栏上玩游戏,Steve iOS 游戏实现思路
最近有一款游戏特别的火爆,叫做Steve ,一种可以在通知中心直接玩的游戏.作者的脑洞也是非常的大,实在让人佩服.其实实现起来也简单,就是用到了iOS8新特性 app extension(Today ...
- 如何在windows上玩转redis的最新特性?
想要了解redis的最新特性,可是windows下的可以安装的版本最高为3.2,想要验证redis的诸如stream特性的话,就无能为力了. 解决方法之一在windows上安装虚拟机,然后再虚拟机上安 ...
- 在 GitHub 上玩转开源项目的 Code Review
一.幕后故事 时光荏苒,岁月如梭-- (太文绉绉了,这不是我的风格) 今天我准备聊聊在 GitHub 上如何玩 Code Review. 突发奇想?心血来潮?不是. 咋回事呢?(对八卦不感兴趣的可以直 ...
- 道德与社会问题简报 #3: Hugging Face 上的道德开放性
使命: 开放和优秀的机器学习 在我们的使命中,我们致力于推动机器学习 (ML) 的民主化,我们在研究如何支持 ML 社区工作并有助于检查危害和防止可能的危害发生.开放式的发展和科学可以分散力量,让许多 ...
- 【用PS3手柄在安卓设备上玩游戏系列】FC(任天堂NES/FC主机)模拟器
NESoid 是安卓系统下公认最好的FC模拟器.据我所知,现在安卓系统下面的绝大部分的FC模拟器,都是基于 NESoid 的内核来开发的. 官方网站:http://www.nesoid.com NES ...
- Windows上玩转TensorFlow(一)
Windows上TensorFlow的安装和环境搭建: 1.安装Python 3.5.2 2.通过Pip3安装TensorFlow CPU版 https://www.tensorflow.org/in ...
- 【索引】用PS3手柄在安卓设备上玩游戏系列
谈安卓游戏对手柄的支持:http://www.cnblogs.com/duxiuxing/p/3729802.html 连接手柄和设备:http://www.cnblogs.com/duxiuxing ...
随机推荐
- Windows安装系统
0x01下载PE 微PE 0x02安装PE 0x021方式一:安装到系统 此方法开机有选择系统的选项,强迫症使用方法二 0x022方式二:安装到U盘 此方法需要一个U盘 确认无误后点击 立即安装到U盘 ...
- Pyathon If条件测试
if条件测试 # 案例 cars = ['audi','bmw','subaru','toyota'] for car in cars: if car =='bmw': print(car.upper ...
- Apache ShenYu 学习笔记一
1.简介 这是一个异步的,高性能的,跨语言的,响应式的 API 网关. 官网文档:https://shenyu.apache.org/zh/docs/index 仓库地址:https://github ...
- 2022-11-26:给定一个字符串s,只含有0~9这些字符 你可以使用来自s中的数字,目的是拼出一个最大的回文数 使用数字的个数,不能超过s里含有的个数 比如 : 39878,能拼出的最大回文数是
2022-11-26:给定一个字符串s,只含有0~9这些字符 你可以使用来自s中的数字,目的是拼出一个最大的回文数 使用数字的个数,不能超过s里含有的个数 比如 : 39878,能拼出的最大回文数是 ...
- 2020-01-26:mysql8.0做了什么改进?
福哥答案2020-01-26: [2020-01-26:mysql8.0做了什么改进?](http://bbs.xiangxueketang.cn/question/1244)帐户管理增加了对角色的支 ...
- 2021-05-28:跳跃游戏 II。给定一个非负整数数组,你最初位于数组的第一个位置。数组中的每个元素代表你在该位置可
2021-05-28:跳跃游戏 II.给定一个非负整数数组,你最初位于数组的第一个位置.数组中的每个元素代表你在该位置可以跳跃的最大长度.你的目标是使用最少的跳跃次数到达数组的最后一个位置.假设你总是 ...
- Python忽略NoData计算多张遥感影像的像元平均值:whitebox库
本文介绍基于Python中whitebox模块,对大量长时间序列栅格遥感影像的每一个像元进行忽略NoData值的多时序平均值求取. 在文章Python ArcPy批量计算多时相遥感影像的各像元 ...
- Python从0到1丨带你认识图像平滑的三种线性滤波
摘要:常用于消除噪声的图像平滑方法包括三种线性滤波(均值滤波.方框滤波.高斯滤波)和两种非线性滤波(中值滤波.双边滤波),本文将详细讲解三种线性滤波方法. 本文分享自华为云社区<[Python从 ...
- 代码随想录算法训练营Day16二叉树|104.二叉树的最大深度 559.n叉树的最大深度 111.二叉树的最小深度 222.完全二叉树的节点个数
代码随想录算法训练营 代码随想录算法训练营Day16二叉树|104.二叉树的最大深度 559.n叉树的最大深度 111.二叉树的最小深度 222.完全二叉树的节点个数 104.二叉树的最大深度 题目 ...
- 基于php的外卖订餐网站(php+mysql)
介绍 一个基于php的外卖订餐网站,包括前端和后台. 效果演示 http://101.43.124.118:8001/admin 源码地址 https://github.com/geeeeeeeek/ ...